-
1
-
-
29944445992
-
Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects
-
Goldbaum MH. Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 2005;103:270-280.
-
(2005)
Trans Am Ophthalmol Soc
, vol.103
, pp. 270-280
-
-
Goldbaum, M.H.1
-
2
-
-
32944475991
-
Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
-
Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2005;46:3676-3683.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3676-3683
-
-
Goldbaum, M.H.1
Sample, P.A.2
Zhang, Z.3
-
3
-
-
29944442558
-
Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
-
Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 2005;46:3684-3692.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3684-3692
-
-
Sample, P.A.1
Boden, C.2
Zhang, Z.3
-
4
-
-
3242892323
-
Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
-
Sample PA, Chan K-L, Boden C, et al. Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2004;45:2596-2605.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 2596-2605
-
-
Sample, P.A.1
Chan, K.-L.2
Boden, C.3
-
5
-
-
0030817329
-
A new generation of algorithms for computerized threshold perimetry, SITA
-
Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. ACTA Ophthalmol Scand 1997;75:368-375.
-
(1997)
ACTA Ophthalmol Scand
, vol.75
, pp. 368-375
-
-
Bengtsson, B.1
Olsson, J.2
Heijl, A.3
Rootzen, H.4
-
6
-
-
0037848978
-
Variational learning of clusters of undercomplete nonsymmetric independent components
-
Chan K, Lee T-W, Sejnowski TJ. Variational learning of clusters of undercomplete nonsymmetric independent components. J Machine Learn Res 2002;3:99-114.
-
(2002)
J Machine Learn Res
, vol.3
, pp. 99-114
-
-
Chan, K.1
Lee, T.-W.2
Sejnowski, T.J.3
-
7
-
-
0034290916
-
ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation
-
Lee T-W, Lewicki MS, Sejnowski TJ. ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation. IEEE Trans Pattern Anal Mach Intell 2000;22:1078-1089.
-
(2000)
IEEE Trans Pattern Anal Mach Intell
, vol.22
, pp. 1078-1089
-
-
Lee, T.-W.1
Lewicki, M.S.2
Sejnowski, T.J.3
-
8
-
-
77949383729
-
-
Sample PA, Jang G, Jung T-P, et al. Unsupervised machine learning with independent component analysis identifies patterns of glaucomatous visual field loss in SITA fields. Invest Ophthalmol Vis Sci 2009;50:E-Abstract 5283.
-
Sample PA, Jang G, Jung T-P, et al. Unsupervised machine learning with independent component analysis identifies patterns of glaucomatous visual field loss in SITA fields. Invest Ophthalmol Vis Sci 2009;50:E-Abstract 5283.
-
-
-
-
9
-
-
0028135264
-
Interpretation of automated perimetry for glaucoma by neural network
-
Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 1994;35:3362-3373.
-
(1994)
Invest Ophthalmol Vis Sci
, vol.35
, pp. 3362-3373
-
-
Goldbaum, M.H.1
Sample, P.A.2
White, H.3
-
10
-
-
0036138639
-
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
-
Goldbaum MH, Sample PA, Chan K-L, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 2002;43:162-169.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 162-169
-
-
Goldbaum, M.H.1
Sample, P.A.2
Chan, K.-L.3
-
11
-
-
0036325049
-
Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
-
Sample PA, Goldbaum MH, Chan K-L, et al. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 2002;43:2660-2665.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 2660-2665
-
-
Sample, P.A.1
Goldbaum, M.H.2
Chan, K.-L.3
|