메뉴 건너뛰기




Volumn 107, Issue , 2009, Pages 136-144

Patterns of glaucomatous visual field loss in sita fields automatically identified using independent component analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANALYZER; ARTICLE; BAYES THEOREM; COMPARATIVE STUDY; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; DIAGNOSTIC VALUE; DISEASE SEVERITY; EYE; GLAUCOMA; HUMAN; INDEPENDENT COMPONENT ANALYSIS; MAJOR CLINICAL STUDY; MODEL; PRIORITY JOURNAL; VISUAL FIELD; VISUAL FIELD DEFECT;

EID: 77949394244     PISSN: None     EISSN: 15456110     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (20)

References (11)
  • 1
    • 29944445992 scopus 로고    scopus 로고
    • Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects
    • Goldbaum MH. Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 2005;103:270-280.
    • (2005) Trans Am Ophthalmol Soc , vol.103 , pp. 270-280
    • Goldbaum, M.H.1
  • 2
    • 32944475991 scopus 로고    scopus 로고
    • Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
    • Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2005;46:3676-3683.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3676-3683
    • Goldbaum, M.H.1    Sample, P.A.2    Zhang, Z.3
  • 3
    • 29944442558 scopus 로고    scopus 로고
    • Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
    • Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 2005;46:3684-3692.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3684-3692
    • Sample, P.A.1    Boden, C.2    Zhang, Z.3
  • 4
    • 3242892323 scopus 로고    scopus 로고
    • Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
    • Sample PA, Chan K-L, Boden C, et al. Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2004;45:2596-2605.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 2596-2605
    • Sample, P.A.1    Chan, K.-L.2    Boden, C.3
  • 5
    • 0030817329 scopus 로고    scopus 로고
    • A new generation of algorithms for computerized threshold perimetry, SITA
    • Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. ACTA Ophthalmol Scand 1997;75:368-375.
    • (1997) ACTA Ophthalmol Scand , vol.75 , pp. 368-375
    • Bengtsson, B.1    Olsson, J.2    Heijl, A.3    Rootzen, H.4
  • 6
    • 0037848978 scopus 로고    scopus 로고
    • Variational learning of clusters of undercomplete nonsymmetric independent components
    • Chan K, Lee T-W, Sejnowski TJ. Variational learning of clusters of undercomplete nonsymmetric independent components. J Machine Learn Res 2002;3:99-114.
    • (2002) J Machine Learn Res , vol.3 , pp. 99-114
    • Chan, K.1    Lee, T.-W.2    Sejnowski, T.J.3
  • 7
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation
    • Lee T-W, Lewicki MS, Sejnowski TJ. ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation. IEEE Trans Pattern Anal Mach Intell 2000;22:1078-1089.
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 8
    • 77949383729 scopus 로고    scopus 로고
    • Sample PA, Jang G, Jung T-P, et al. Unsupervised machine learning with independent component analysis identifies patterns of glaucomatous visual field loss in SITA fields. Invest Ophthalmol Vis Sci 2009;50:E-Abstract 5283.
    • Sample PA, Jang G, Jung T-P, et al. Unsupervised machine learning with independent component analysis identifies patterns of glaucomatous visual field loss in SITA fields. Invest Ophthalmol Vis Sci 2009;50:E-Abstract 5283.
  • 9
    • 0028135264 scopus 로고
    • Interpretation of automated perimetry for glaucoma by neural network
    • Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 1994;35:3362-3373.
    • (1994) Invest Ophthalmol Vis Sci , vol.35 , pp. 3362-3373
    • Goldbaum, M.H.1    Sample, P.A.2    White, H.3
  • 10
    • 0036138639 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
    • Goldbaum MH, Sample PA, Chan K-L, et al. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 2002;43:162-169.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 162-169
    • Goldbaum, M.H.1    Sample, P.A.2    Chan, K.-L.3
  • 11
    • 0036325049 scopus 로고    scopus 로고
    • Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
    • Sample PA, Goldbaum MH, Chan K-L, et al. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 2002;43:2660-2665.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 2660-2665
    • Sample, P.A.1    Goldbaum, M.H.2    Chan, K.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.