-
1
-
-
0024554107
-
The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures
-
Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 1989, 171:1379-1385.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1379-1385
-
-
Fayet, O.1
Ziegelhoffer, T.2
Georgopoulos, C.3
-
2
-
-
0033547324
-
Identification of in vivo substrates of the chaperonin GroEL
-
Houry W.A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999, 402:147-154.
-
(1999)
Nature
, vol.402
, pp. 147-154
-
-
Houry, W.A.1
Frishman, D.2
Eckerskorn, C.3
Lottspeich, F.4
Hartl, F.U.5
-
3
-
-
33750489742
-
Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL
-
Chapman E., Farr G.W., Usaite R., Furtak K., Fenton W.A., Chaudhuri T.K., et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc. Natl Acad. Sci. USA 2006, 103:15800-15805.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 15800-15805
-
-
Chapman, E.1
Farr, G.W.2
Usaite, R.3
Furtak, K.4
Fenton, W.A.5
Chaudhuri, T.K.6
-
4
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 Å
-
Braig K., Otwinowski Z., Hegde R., Boisvert D.C., Joachimiak A., Horwich A.L., Sigler P.B. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 1994, 371:578-586.
-
(1994)
Nature
, vol.371
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hegde, R.3
Boisvert, D.C.4
Joachimiak, A.5
Horwich, A.L.6
Sigler, P.B.7
-
5
-
-
0030067634
-
The crystal structure of the GroES co-chaperonin at 2.8 Å resolution
-
Hunt J.F., Weaver A.J., Landry S.J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature 1996, 379:37-45.
-
(1996)
Nature
, vol.379
, pp. 37-45
-
-
Hunt, J.F.1
Weaver, A.J.2
Landry, S.J.3
Gierasch, L.4
Deisenhofer, J.5
-
6
-
-
0030870719
-
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
-
Xu Z., Horwich A.L., Sigler P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 1997, 388:741-750.
-
(1997)
Nature
, vol.388
, pp. 741-750
-
-
Xu, Z.1
Horwich, A.L.2
Sigler, P.B.3
-
7
-
-
0026417227
-
Binding of chaperonins
-
Saibil H., Dong Z., Wood S., auf der Mauer A. Binding of chaperonins. Nature 1991, 353:25-26.
-
(1991)
Nature
, vol.353
, pp. 25-26
-
-
Saibil, H.1
Dong, Z.2
Wood, S.3
auf der Mauer, A.4
-
8
-
-
34247644778
-
Topologies of a substrate protein bound to the chaperonin GroEL
-
Elad N., Farr G.W., Clare D.K., Orlova E.V., Horwich A.L., Saibil H.R. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 2007, 26:415-426.
-
(2007)
Mol. Cell
, vol.26
, pp. 415-426
-
-
Elad, N.1
Farr, G.W.2
Clare, D.K.3
Orlova, E.V.4
Horwich, A.L.5
Saibil, H.R.6
-
9
-
-
0028113299
-
Residues in chaperonin GroEL required for polypeptide binding and release
-
Fenton W.A., Kashi Y., Furtak K., Horwich A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 1994, 371:614-619.
-
(1994)
Nature
, vol.371
, pp. 614-619
-
-
Fenton, W.A.1
Kashi, Y.2
Furtak, K.3
Horwich, A.L.4
-
10
-
-
0033598941
-
The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity
-
Chen L., Sigler P.B. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 1999, 99:757-768.
-
(1999)
Cell
, vol.99
, pp. 757-768
-
-
Chen, L.1
Sigler, P.B.2
-
11
-
-
19844377583
-
The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy
-
Falke S., Tama F., Brooks C.L., Gogol E.P., Fisher M.T. The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy. J. Mol. Biol. 2005, 348:219-230.
-
(2005)
J. Mol. Biol.
, vol.348
, pp. 219-230
-
-
Falke, S.1
Tama, F.2
Brooks, C.L.3
Gogol, E.P.4
Fisher, M.T.5
-
12
-
-
40949124274
-
GroEL stimulates protein folding through forced unfolding
-
Lin Z., Madan D., Rye H.S. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 2008, 15:303-311.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 303-311
-
-
Lin, Z.1
Madan, D.2
Rye, H.S.3
-
13
-
-
4944221602
-
GroEL-mediated protein folding: making the impossible, possible
-
Lin Z., Rye H.S. GroEL-mediated protein folding: making the impossible, possible. Mol. Cell 2004, 16:23-34.
-
(2004)
Mol. Cell
, vol.16
, pp. 23-34
-
-
Lin, Z.1
Rye, H.S.2
-
14
-
-
0028031345
-
Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding
-
Todd M.J., Viitanen P.V., Lorimer G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 1994, 265:659-666.
-
(1994)
Science
, vol.265
, pp. 659-666
-
-
Todd, M.J.1
Viitanen, P.V.2
Lorimer, G.H.3
-
15
-
-
0027933369
-
GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms
-
Weissman J.S., Kashi Y., Fenton W.A., Horwich A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 1994, 78:693-702.
-
(1994)
Cell
, vol.78
, pp. 693-702
-
-
Weissman, J.S.1
Kashi, Y.2
Fenton, W.A.3
Horwich, A.L.4
-
16
-
-
0029016593
-
The origins and consequences of asymmetry in the chaperonin reaction cycle
-
Burston S.G., Ranson N.A., Clarke A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 1995, 249:138-152.
-
(1995)
J. Mol. Biol.
, vol.249
, pp. 138-152
-
-
Burston, S.G.1
Ranson, N.A.2
Clarke, A.R.3
-
17
-
-
0030056969
-
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
-
Weissman J.S., Rye H.S., Fenton W.A., Beechem J.M., Horwich A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 1996, 84:481-490.
-
(1996)
Cell
, vol.84
, pp. 481-490
-
-
Weissman, J.S.1
Rye, H.S.2
Fenton, W.A.3
Beechem, J.M.4
Horwich, A.L.5
-
18
-
-
0030045870
-
Protein folding in the central cavity of the GroEL-GroES chaperonin complex
-
Mayhew M., da Silva A.C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F.U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 1996, 379:420-426.
-
(1996)
Nature
, vol.379
, pp. 420-426
-
-
Mayhew, M.1
da Silva, A.C.2
Martin, J.3
Erdjument-Bromage, H.4
Tempst, P.5
Hartl, F.U.6
-
19
-
-
0030804446
-
Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL
-
Rye H.S., Burston S.G., Fenton W.A., Beechem J.M., Xu Z., Sigler P.B., Horwich A.L. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 1997, 388:792-798.
-
(1997)
Nature
, vol.388
, pp. 792-798
-
-
Rye, H.S.1
Burston, S.G.2
Fenton, W.A.3
Beechem, J.M.4
Xu, Z.5
Sigler, P.B.6
Horwich, A.L.7
-
20
-
-
58149229533
-
Chaperonin complex with a newly folded protein encapsulated in the folding chamber
-
Clare D.K., Bakkes P.J., van Heerikhuizen H., van der Vies S.M., Saibil H.R. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 2009, 457:107-110.
-
(2009)
Nature
, vol.457
, pp. 107-110
-
-
Clare, D.K.1
Bakkes, P.J.2
van Heerikhuizen, H.3
van der Vies, S.M.4
Saibil, H.R.5
-
21
-
-
33746357595
-
Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE
-
Cliff M.J., Limpkin C., Cameron A., Burston S.G., Clarke A.R. Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. J. Biol. Chem. 2006, 281:21266-21275.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21266-21275
-
-
Cliff, M.J.1
Limpkin, C.2
Cameron, A.3
Burston, S.G.4
Clarke, A.R.5
-
22
-
-
0035913902
-
Dual function of protein confinement in chaperonin-assisted protein folding
-
Brinker A., Pfeifer G., Kerner M.J., Naylor D.J., Hartl F.U., Hayer-Hartl M. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 2001, 107:223-233.
-
(2001)
Cell
, vol.107
, pp. 223-233
-
-
Brinker, A.1
Pfeifer, G.2
Kerner, M.J.3
Naylor, D.J.4
Hartl, F.U.5
Hayer-Hartl, M.6
-
23
-
-
0029087065
-
Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds
-
Ranson N.A., Dunster N.J., Burston S.G., Clarke A.R. Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 1995, 250:581-586.
-
(1995)
J. Mol. Biol.
, vol.250
, pp. 581-586
-
-
Ranson, N.A.1
Dunster, N.J.2
Burston, S.G.3
Clarke, A.R.4
-
24
-
-
56249135270
-
Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
-
Apetri A.C., Horwich A.L. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl Acad. Sci. USA 2008, 105:17351-17355.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 17351-17355
-
-
Apetri, A.C.1
Horwich, A.L.2
-
25
-
-
0037062480
-
Simulations of beta-hairpin folding confined to spherical pores using distributed computing
-
Klimov D.K., Newfield D., Thirumalai D. Simulations of beta-hairpin folding confined to spherical pores using distributed computing. Proc. Natl Acad. Sci. USA 2002, 99:8019-8024.
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 8019-8024
-
-
Klimov, D.K.1
Newfield, D.2
Thirumalai, D.3
-
26
-
-
34547507851
-
Effects of crowding and confinement on the structures of the transition state ensemble in proteins
-
Cheung M.S., Thirumalai D. Effects of crowding and confinement on the structures of the transition state ensemble in proteins. J. Phys. Chem. B 2007, 111:8250-8257.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 8250-8257
-
-
Cheung, M.S.1
Thirumalai, D.2
-
27
-
-
44349090822
-
Essential role of the chaperonin folding compartment in vivo
-
Tang Y.C., Chang H.C., Chakraborty K., Hartl F.U., Hayer-Hartl M. Essential role of the chaperonin folding compartment in vivo. EMBO J. 2008, 27:1458-1468.
-
(2008)
EMBO J.
, vol.27
, pp. 1458-1468
-
-
Tang, Y.C.1
Chang, H.C.2
Chakraborty, K.3
Hartl, F.U.4
Hayer-Hartl, M.5
-
28
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang Y.C., Chang H.C., Roeben A., Wischnewski D., Wischnewski N., Kerner M.J., et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 2006, 125:903-914.
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.C.1
Chang, H.C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
Kerner, M.J.6
-
29
-
-
68649123756
-
The GroEL/GroES cis cavity as a passive anti-aggregation device
-
Horwich A.L., Apetri A.C., Fenton W.A. The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett. 2009, 583:2654-2662.
-
(2009)
FEBS Lett.
, vol.583
, pp. 2654-2662
-
-
Horwich, A.L.1
Apetri, A.C.2
Fenton, W.A.3
-
30
-
-
0141754010
-
Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics
-
Chaudhry C., Farr G.W., Todd M.J., Rye H.S., Brunger A.T., Adams P.D., et al. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J. 2003, 22:4877-4887.
-
(2003)
EMBO J.
, vol.22
, pp. 4877-4887
-
-
Chaudhry, C.1
Farr, G.W.2
Todd, M.J.3
Rye, H.S.4
Brunger, A.T.5
Adams, P.D.6
-
31
-
-
0033617129
-
GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
-
Rye H.S., Roseman A.M., Chen S., Furtak K., Fenton W.A., Saibil H.R., Horwich A.L. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999, 97:325-338.
-
(1999)
Cell
, vol.97
, pp. 325-338
-
-
Rye, H.S.1
Roseman, A.M.2
Chen, S.3
Furtak, K.4
Fenton, W.A.5
Saibil, H.R.6
Horwich, A.L.7
-
32
-
-
0030592538
-
The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL
-
Roseman A.M., Chen S., White H., Braig K., Saibil H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 1996, 87:241-251.
-
(1996)
Cell
, vol.87
, pp. 241-251
-
-
Roseman, A.M.1
Chen, S.2
White, H.3
Braig, K.4
Saibil, H.R.5
-
33
-
-
0035715944
-
Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding
-
Saibil H.R., Horwich A.L., Fenton W.A. Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Adv. Protein Chem. 2001, 59:45-72.
-
(2001)
Adv. Protein Chem.
, vol.59
, pp. 45-72
-
-
Saibil, H.R.1
Horwich, A.L.2
Fenton, W.A.3
-
34
-
-
45649083920
-
Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET
-
Papo N., Kipnis Y., Haran G., Horovitz A. Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J. Mol. Biol. 2008, 380:717-725.
-
(2008)
J. Mol. Biol.
, vol.380
, pp. 717-725
-
-
Papo, N.1
Kipnis, Y.2
Haran, G.3
Horovitz, A.4
-
35
-
-
0028135063
-
Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196→Ala
-
Yifrach O., Horovitz A. Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196→Ala. J. Mol. Biol. 1994, 243:397-401.
-
(1994)
J. Mol. Biol.
, vol.243
, pp. 397-401
-
-
Yifrach, O.1
Horovitz, A.2
-
36
-
-
0029004759
-
Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL
-
Yifrach O., Horovitz A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 1995, 34:5303-5308.
-
(1995)
Biochemistry
, vol.34
, pp. 5303-5308
-
-
Yifrach, O.1
Horovitz, A.2
-
37
-
-
0028785583
-
Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES
-
Weissman J.S., Hohl C.M., Kovalenko O., Kashi Y., Chen S., Braig K., et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 1995, 83:577-587.
-
(1995)
Cell
, vol.83
, pp. 577-587
-
-
Weissman, J.S.1
Hohl, C.M.2
Kovalenko, O.3
Kashi, Y.4
Chen, S.5
Braig, K.6
-
38
-
-
0033575308
-
Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form
-
Erbse A., Yifrach O., Jones S., Lund P.A. Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form. J. Biol. Chem. 1999, 274:20351-20357.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 20351-20357
-
-
Erbse, A.1
Yifrach, O.2
Jones, S.3
Lund, P.A.4
-
39
-
-
0026504545
-
Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring
-
Viitanen P.V., Lorimer G.H., Seetharam R., Gupta R.S., Oppenheim J., Thomas J.O., Cowan N.J. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J. Biol. Chem. 1992, 267:695-698.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 695-698
-
-
Viitanen, P.V.1
Lorimer, G.H.2
Seetharam, R.3
Gupta, R.S.4
Oppenheim, J.5
Thomas, J.O.6
Cowan, N.J.7
-
40
-
-
0032113635
-
A single ring is sufficient for productive chaperonin-mediated folding in vivo
-
Nielsen K.L., Cowan N.J. A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol. Cell 1998, 2:93-99.
-
(1998)
Mol. Cell
, vol.2
, pp. 93-99
-
-
Nielsen, K.L.1
Cowan, N.J.2
-
41
-
-
0034671453
-
From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL
-
Chatellier J., Hill F., Foster N.W., Goloubinoff P., Fersht A.R. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. J. Mol. Biol. 2000, 304:897-910.
-
(2000)
J. Mol. Biol.
, vol.304
, pp. 897-910
-
-
Chatellier, J.1
Hill, F.2
Foster, N.W.3
Goloubinoff, P.4
Fersht, A.R.5
-
42
-
-
0042736829
-
Isolation and characterisation of mutants of GroEL that are fully functional as single rings
-
Sun Z., Scott D.J., Lund P.A. Isolation and characterisation of mutants of GroEL that are fully functional as single rings. J. Mol. Biol. 2003, 332:715-728.
-
(2003)
J. Mol. Biol.
, vol.332
, pp. 715-728
-
-
Sun, Z.1
Scott, D.J.2
Lund, P.A.3
-
43
-
-
0025995773
-
Cooperativity in ATP hydrolysis by GroEL is increased by GroES
-
Gray T.E., Fersht A.R. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 1991, 292:254-258.
-
(1991)
FEBS Lett.
, vol.292
, pp. 254-258
-
-
Gray, T.E.1
Fersht, A.R.2
-
44
-
-
0032714370
-
A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL
-
Cliff M.J., Kad N.M., Hay N., Lund P.A., Webb M.R., Burston S.G., Clarke A.R. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J. Mol. Biol. 1999, 293:667-684.
-
(1999)
J. Mol. Biol.
, vol.293
, pp. 667-684
-
-
Cliff, M.J.1
Kad, N.M.2
Hay, N.3
Lund, P.A.4
Webb, M.R.5
Burston, S.G.6
Clarke, A.R.7
-
45
-
-
2142814279
-
A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL
-
Poso D., Clarke A.R., Burston S.G. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. J. Mol. Biol. 2004, 338:969-977.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 969-977
-
-
Poso, D.1
Clarke, A.R.2
Burston, S.G.3
-
46
-
-
0030846353
-
Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37°C but not at 43°C
-
Ivic A., Olden D., Wallington E.J., Lund P.A. Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37°C but not at 43°C. Gene 1997, 194:1-8.
-
(1997)
Gene
, vol.194
, pp. 1-8
-
-
Ivic, A.1
Olden, D.2
Wallington, E.J.3
Lund, P.A.4
-
47
-
-
2142822809
-
Kinetic analysis of ATP-dependent inter-ring communication in GroEL
-
Amir A., Horovitz A. Kinetic analysis of ATP-dependent inter-ring communication in GroEL. J. Mol. Biol. 2004, 338:979-988.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 979-988
-
-
Amir, A.1
Horovitz, A.2
-
48
-
-
0030995661
-
Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions
-
Behlke J., Ristau O., Schonfeld H.J. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry 1997, 36:5149-5156.
-
(1997)
Biochemistry
, vol.36
, pp. 5149-5156
-
-
Behlke, J.1
Ristau, O.2
Schonfeld, H.J.3
-
49
-
-
0027419011
-
Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding
-
Jackson G.S., Staniforth R.A., Halsall D.J., Atkinson T., Holbrook J.J., Clarke A.R., Burston S.G. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 1993, 32:2554-2563.
-
(1993)
Biochemistry
, vol.32
, pp. 2554-2563
-
-
Jackson, G.S.1
Staniforth, R.A.2
Halsall, D.J.3
Atkinson, T.4
Holbrook, J.J.5
Clarke, A.R.6
Burston, S.G.7
-
50
-
-
0027250447
-
Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion
-
Todd M.J., Viitanen P.V., Lorimer G.H. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 1993, 32:8560-8567.
-
(1993)
Biochemistry
, vol.32
, pp. 8560-8567
-
-
Todd, M.J.1
Viitanen, P.V.2
Lorimer, G.H.3
-
51
-
-
0028609655
-
Residue lysine-34 in GroES modulates allosteric transitions in GroEL
-
Kovalenko O., Yifrach O., Horovitz A. Residue lysine-34 in GroES modulates allosteric transitions in GroEL. Biochemistry 1994, 33:14974-14978.
-
(1994)
Biochemistry
, vol.33
, pp. 14974-14978
-
-
Kovalenko, O.1
Yifrach, O.2
Horovitz, A.3
-
52
-
-
4644274961
-
Identification of a major inter-ring coupling step in the GroEL reaction cycle
-
Poso D., Clarke A.R., Burston S.G. Identification of a major inter-ring coupling step in the GroEL reaction cycle. J. Biol. Chem. 2004, 279:38111-38117.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 38111-38117
-
-
Poso, D.1
Clarke, A.R.2
Burston, S.G.3
-
53
-
-
0032546571
-
Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL
-
Yifrach O., Horovitz A. Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 1998, 37:7083-7088.
-
(1998)
Biochemistry
, vol.37
, pp. 7083-7088
-
-
Yifrach, O.1
Horovitz, A.2
-
54
-
-
0037436402
-
Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy
-
Inobe T., Arai M., Nakao M., Ito K., Kamagata K., Makio T., et al. Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy. J. Mol. Biol. 2003, 327:183-191.
-
(2003)
J. Mol. Biol.
, vol.327
, pp. 183-191
-
-
Inobe, T.1
Arai, M.2
Nakao, M.3
Ito, K.4
Kamagata, K.5
Makio, T.6
-
55
-
-
0037184939
-
Directed evolution of substrate-optimized GroEL/S chaperonins
-
Wang J.D., Herman C., Tipton K.A., Gross C.A., Weissman J.S. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 2002, 111:1027-1039.
-
(2002)
Cell
, vol.111
, pp. 1027-1039
-
-
Wang, J.D.1
Herman, C.2
Tipton, K.A.3
Gross, C.A.4
Weissman, J.S.5
-
56
-
-
34248349952
-
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
-
Farr G.W., Fenton W.A., Horwich A.L. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc. Natl Acad. Sci. USA 2007, 104:5342-5347.
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 5342-5347
-
-
Farr, G.W.1
Fenton, W.A.2
Horwich, A.L.3
-
57
-
-
32244441663
-
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes
-
Ranson N.A., Clare D.K., Farr G.W., Houldershaw D., Horwich A.L., Saibil H.R. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 2006, 13:147-152.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 147-152
-
-
Ranson, N.A.1
Clare, D.K.2
Farr, G.W.3
Houldershaw, D.4
Horwich, A.L.5
Saibil, H.R.6
-
58
-
-
2642659387
-
GroE is vital for cell-wall synthesis
-
McLennan N., Masters M. GroE is vital for cell-wall synthesis. Nature 1998, 392:139.
-
(1998)
Nature
, vol.392
, pp. 139
-
-
McLennan, N.1
Masters, M.2
|