메뉴 건너뛰기




Volumn 1, Issue 1, 2008, Pages 14-25

Prediction of lipid-interacting amino acid residues from sequence features

Author keywords

biochemical features; lipid interacting residues; machine learning; sequence based prediction; Support Vector Machines; SVMs

Indexed keywords

AMINO ACID; LIPID; MEMBRANE PROTEIN;

EID: 77449099952     PISSN: 17560756     EISSN: 17560764     Source Type: Journal    
DOI: 10.1504/IJCBDD.2008.018707     Document Type: Article
Times cited : (5)

References (21)
  • 1
    • 33646812935 scopus 로고    scopus 로고
    • Lipids and lipidomics in brain injury and diseases
    • 5 May
    • Adibhatla, R.M., Hatcher, J.F. and Dempsey, R.J. (2006) ‘Lipids and lipidomics in brain injury and diseases’, AAPS J., Vol. 8, No. 2, 5 May, pp.E314–E321.
    • (2006) AAPS J. , vol.8 , Issue.2 , pp. E314-E321
    • Adibhatla, R.M.1    Hatcher, J.F.2    Dempsey, R.J.3
  • 2
    • 25444524842 scopus 로고    scopus 로고
    • PSSM-based prediction of DNA binding sites in proteins
    • February
    • Ahmad, S. and Sarai, A. (2005) ‘PSSM-based prediction of DNA binding sites in proteins’, BMC Bioinformatics, Vol. 19, No. 6, February, p.33.
    • (2005) BMC Bioinformatics , vol.19 , Issue.6 , pp. 33
    • Ahmad, S.1    Sarai, A.2
  • 3
    • 1542400269 scopus 로고    scopus 로고
    • Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information
    • 1 March (Epub. 22 January, 2004)
    • Ahmad, S., Gromiha, M.M. and Sarai, A. (2004) ‘Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information’, Bioinformatics, Vol. 20, No. 4, 1 March, pp.477–486 (Epub. 22 January, 2004).
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 477-486
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 4
    • 33746331373 scopus 로고    scopus 로고
    • Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications
    • July-August
    • Baumes, L.A., Serra, J.M., Serna, P. and Corma, A. (2006) ‘Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications’, J. Comb. Chem., Vol. 8, No. 4, July-August, pp.583–596.
    • (2006) J. Comb. Chem. , vol.8 , Issue.4 , pp. 583-596
    • Baumes, L.A.1    Serra, J.M.2    Serna, P.3    Corma, A.4
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P. (1997) ‘The use of the area under the ROC curve in the evaluation of machine learning algorithms’, Pattern Recognition, Vol. 30, pp.1145–1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 6
    • 34249753618 scopus 로고
    • Support vector networks
    • September
    • Cortes, C. and Vapnik, V. (1995) ‘Support vector networks’, Machine Learning, Vol. 20, No. 3, September, pp.273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
    • 27 April
    • Hua, S. and Sun, Z. (2001) ‘A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach’, J. Mol. Biol., Vol. 308, No. 2, 27 April, pp.397–407.
    • (2001) J. Mol. Biol. , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 8
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Schölkopf, B., Burges, C. and Smola, A. (Eds.) MIT Press, Cambridge
    • Joachims, T. (1999) ‘Making large-scale support vector machine learning practical’, in Schölkopf, B., Burges, C. and Smola, A. (Eds.): Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, pp.169–184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 9
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • August
    • Kim, H. and Park, H. (2003) ‘Protein secondary structure prediction based on an improved support vector machines approach’, Protein Eng., Vol. 16, No. 8, August, pp.553–560.
    • (2003) Protein Eng. , vol.16 , Issue.8 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 10
    • 1042268067 scopus 로고    scopus 로고
    • Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor
    • 15 February
    • Kim, H. and Park, H. (2004) ‘Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor’, Proteins, Vol. 54, No. 3, 15 February, pp.557–562.
    • (2004) Proteins , vol.54 , Issue.3 , pp. 557-562
    • Kim, H.1    Park, H.2
  • 11
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • 5 May
    • Kyte, J. and Doolittle, R.F. (1982) ‘A simple method for displaying the hydropathic character of a protein’, J. Mol. Biol., Vol. 157, No. 1, 5 May, pp.105–132.
    • (1982) J. Mol. Biol. , vol.157 , Issue.1 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 13
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • Schölkopf, B., Tsuda, K. and Vert, J.P. (Eds.): MIT Press, Cambridge
    • Noble, W.S. (2004) ‘Support vector machine applications in computational biology’, in Schölkopf, B., Tsuda, K. and Vert, J.P. (Eds.): Kernel Methods in Computational Biology, MIT Press, Cambridge, pp.71–92.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 14
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • December
    • Noble, W.S. (2006) ‘What is a support vector machine?’, Nat Biotechnol., Vol. 24, No. 12, December, pp.1565–1567.
    • (2006) Nat Biotechnol. , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 15
    • 17244367810 scopus 로고    scopus 로고
    • The challenge of brain lipidomics
    • September
    • Piomelli, D. (2005) ‘The challenge of brain lipidomics’, Prostaglandins Other Lipid Mediat., Vol. 77, Nos. 1–4, September, pp.23–34.
    • (2005) Prostaglandins Other Lipid Mediat. , vol.77 , Issue.1-4 , pp. 23-34
    • Piomelli, D.1
  • 16
    • 33746489960 scopus 로고    scopus 로고
    • Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data
    • March
    • Scott, D.L., Diez, G. and Goldmann, W.H. (2006) ‘Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data’, Theor. Biol. Med. Model, Vol. 28, No. 3, March, p.17.
    • (2006) Theor. Biol. Med. Model , vol.28 , Issue.3 , pp. 17
    • Scott, D.L.1    Diez, G.2    Goldmann, W.H.3
  • 17
    • 7944233158 scopus 로고    scopus 로고
    • Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases
    • November
    • Selkoe, D.J. (2004) ‘Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases’, Nat. Cell Biol., Vol. 6, No. 11, November, pp.1054–1061.
    • (2004) Nat. Cell Biol. , vol.6 , Issue.11 , pp. 1054-1061
    • Selkoe, D.J.1
  • 18
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • 3 June
    • Swets, J.A. (1988) ‘Measuring the accuracy of diagnostic systems’, Science, Vol. 240, No. 4857, 3 June, pp.1285–1293.
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • Swets, J.A.1
  • 19
    • 0029062869 scopus 로고
    • Interaction of the 47-kDa talin fragment and the 32-kDa vinculin fragment with acidic phospholipids: a computer analysis
    • July
    • Tempel, M., Goldmann, W.H., Isenberg, G. and Sackmann, E. (1995) ‘Interaction of the 47-kDa talin fragment and the 32-kDa vinculin fragment with acidic phospholipids: a computer analysis’, Biophys J., Vol. 69, No. 1, July, pp.228–241.
    • (1995) Biophys J. , vol.69 , Issue.1 , pp. 228-241
    • Tempel, M.1    Goldmann, W.H.2    Isenberg, G.3    Sackmann, E.4
  • 20
    • 33747828217 scopus 로고    scopus 로고
    • BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences
    • Web Server issue
    • Wang, L. and Brown, S. J. (2006) ‘BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences’, Nucleic Acids Res., Vol. 34, 1 July, Web Server issue, pp.W243–W248.
    • (2006) Nucleic Acids Res. , vol.34 , Issue.1 July , pp. W243-W248
    • Wang, L.1    Brown, S.J.2
  • 21
    • 22144478635 scopus 로고    scopus 로고
    • The emerging field of lipidomics
    • July
    • Wenk, M.R. (2005) ‘The emerging field of lipidomics’, Nat. Rev. Drug Discov., Vol. 4, No. 7, July, pp.594–610.
    • (2005) Nat. Rev. Drug Discov. , vol.4 , Issue.7 , pp. 594-610
    • Wenk, M.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.