메뉴 건너뛰기




Volumn 31, Issue 6, 2010, Pages 462-468

A pre-clustering technique for optimizing subclass discriminant analysis

Author keywords

Dimensionality reduction; Linear discriminant analysis (LDA); Pre clustering technique; Subclass discriminant analysis (SDA)

Indexed keywords

ARTIFICIAL DATA; CLASS DISTRIBUTIONS; CLASSIFICATION ACCURACY; CLUSTERING TECHNIQUES; COMPUTATIONAL BURDEN; COMPUTATIONAL COSTS; CONDITIONAL DISTRIBUTION; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; IMAGE DATABASE; K-MEANS CLUSTERING; LINEAR DISCRIMINANT ANALYSIS; MIXTURE OF GAUSSIANS; POSSIBLE SOLUTIONS; PRE-CLUSTERING TECHNIQUE; REDUCTION OF DIMENSIONALITY; TRAINING SETS; UNDERLYING DISTRIBUTION;

EID: 77249109292     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.07.007     Document Type: Article
Times cited : (14)

References (27)
  • 3
    • 24644496298 scopus 로고    scopus 로고
    • Local discriminant embedding and its variants
    • Soc. Conf. on Computer Vision and Pattern Recognition
    • Chen, H.-T., Chang, H.-W., Liu, T.-L., 2000. Local discriminant embedding and its variants. In: Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 846-853.
    • (2000) Proc. IEEE Comput , vol.2 , pp. 846-853
    • Chen, H.-T.1    Chang, H.-W.2    Liu, T.-L.3
  • 4
    • 0036522825 scopus 로고    scopus 로고
    • Regularized discriminant analysis and its application to face recognition
    • Dai D.Q., and Yuen P.C. Regularized discriminant analysis and its application to face recognition. Pattern Recognition 36 (2003) 845-847
    • (2003) Pattern Recognition , vol.36 , pp. 845-847
    • Dai, D.Q.1    Yuen, P.C.2
  • 6
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters ? Which clustering method ? Answers via model-based cluster analysis
    • Fraley C., and Raftery A.E. How many clusters ? Which clustering method ? Answers via model-based cluster analysis. Comput. J. 41 8 (1998) 578-588
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 27744565938 scopus 로고    scopus 로고
    • Solving the small sample size problem in face reognition using generalized discriminant analysis
    • Howland P., Wang J., and Park H. Solving the small sample size problem in face reognition using generalized discriminant analysis. Pattern Recognition 39 (2006) 277-287
    • (2006) Pattern Recognition , vol.39 , pp. 277-287
    • Howland, P.1    Wang, J.2    Park, H.3
  • 13
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • Kim T.-K., and Kittler J. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans. Pattern Anal. Machine Intell. 27 3 (2005) 318-327
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , Issue.3 , pp. 318-327
    • Kim, T.-K.1    Kittler, J.2
  • 14
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of LDA: The Cherno criterion
    • Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: The Cherno criterion. IEEE Trans. Pattern Anal. Machine Intell. 26 6 (2004) 732-739
    • (2004) IEEE Trans. Pattern Anal. Machine Intell. , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 15
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: A statistical linear discriminant analysis for image matrix
    • Ming L., and Yuan B. 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Lett. 26 5 (2005) 527-532
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.5 , pp. 527-532
    • Ming, L.1    Yuan, B.2
  • 16
    • 6444237040 scopus 로고    scopus 로고
    • Face recognition using direct, weighted linear discriminant analysis and modular subspaces
    • Price J.R., and Gee T.F. Face recognition using direct, weighted linear discriminant analysis and modular subspaces. Pattern Recognition 38 (2005) 209-219
    • (2005) Pattern Recognition , vol.38 , pp. 209-219
    • Price, J.R.1    Gee, T.F.2
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 18
    • 45849107211 scopus 로고    scopus 로고
    • Linear dimensionality reduction by maximizing the Chernoff distance in the transformed space
    • Rueda L., and Herrera M. Linear dimensionality reduction by maximizing the Chernoff distance in the transformed space. Pattern Recognition 41 (2008) 3138-3152
    • (2008) Pattern Recognition , vol.41 , pp. 3138-3152
    • Rueda, L.1    Herrera, M.2
  • 20
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition
    • Yang J., Frangi A.F., Yang J.-Y., and Zhang D. KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Machine Intell. 27 2 (2005) 230-244
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, A.F.2    Yang, J.-Y.3    Zhang, D.4
  • 22
    • 21244494853 scopus 로고    scopus 로고
    • A two-stage linear discriminant analysis via QR-decomposition
    • Ye J., and Li Q. A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans. Pattern Anal. Machine Intell. 27 6 (2005) 929-941
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , Issue.6 , pp. 929-941
    • Ye, J.1    Li, Q.2
  • 23
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data - with application to face recognition
    • Yu H., and Yang J. A direct LDA algorithm for high-dimensional data - with application to face recognition. Pattern Recognition 34 (2001) 2067-2070
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 24
    • 41549158225 scopus 로고    scopus 로고
    • 1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?
    • Zheng W.-S., Lai J.H., and Li S.Z. 1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?. Pattern Recognition 41 (2008) 2156-2172
    • (2008) Pattern Recognition , vol.41 , pp. 2156-2172
    • Zheng, W.-S.1    Lai, J.H.2    Li, S.Z.3
  • 26
    • 10044262953 scopus 로고    scopus 로고
    • Model-based mixture discriminant analysis - an experimental study
    • Zohar H., and Aladjem M. Model-based mixture discriminant analysis - an experimental study. Pattern Recognition 38 (2005) 437-440
    • (2005) Pattern Recognition , vol.38 , pp. 437-440
    • Zohar, H.1    Aladjem, M.2
  • 27
    • 34548668667 scopus 로고    scopus 로고
    • Regularized mixture discriminant analysis
    • Zohar H., and Aladjem M. Regularized mixture discriminant analysis. Pattern Recognition Lett. 28 (2007) 2104-2115
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 2104-2115
    • Zohar, H.1    Aladjem, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.