메뉴 건너뛰기




Volumn 22, Issue 3, 2010, Pages 348-364

Beyond redundancies: A metric-invariant method for unsupervised feature selection

Author keywords

Feature evaluation and selection; Information theory; Metric invariant

Indexed keywords

DE-NOISING; DISCRIMINATIVE FEATURES; DISTANCE METRICS; EMPIRICAL EVALUATIONS; FEATURE EVALUATION AND SELECTION; FEATURE SELECTION; FEATURE SPACE; INVARIANT METHODS; UNSUPERVISED FEATURE SELECTION;

EID: 76749138179     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2009.84     Document Type: Article
Times cited : (7)

References (40)
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • K. Kohavi and G. John, "Wrappers for Feature Subset Selection," Artificial Intelligence, vol.97, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, K.1    John, G.2
  • 3
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, "Toward Integrating Feature Selection Algorithms for Classification and Clustering," IEEE Trans. Knowledge and Data Eng., vol.17, no.4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 4
    • 0011214473 scopus 로고
    • The automatic identification of stop words
    • J. Wilbur and K. Sirotkin, "The Automatic Identification of Stop Words," J. Information Science, vol.18, pp. 45-55, 1992.
    • (1992) J. Information Science , vol.18 , pp. 45-55
    • Wilbur, J.1    Sirotkin, K.2
  • 5
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature Selection for Classification," Int'l J. Intelligent Data Analysis, vol.1, pp. 131-156, 1997.
    • (1997) Int'l J. Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 9
    • 76749169018 scopus 로고    scopus 로고
    • Consensual clustering for unsupervised feature selection. Application to SPOT5 satellite images
    • M. Campedel, I. Kyrgyzov, and H. Maitre, "Consensual Clustering for Unsupervised Feature Selection. Application to SPOT5 Satellite Images," J. Machine Learning Research: Workshop and Conf. Proc., vol.4, pp. 48-59, 2008.
    • (2008) J. Machine Learning Research: Workshop and Conf. Proc. , vol.4 , pp. 48-59
    • Campedel, M.1    Kyrgyzov, I.2    Maitre, H.3
  • 11
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao and H. Liu, "Spectral Feature Selection for Supervised and Unsupervised Learning," Proc. Int'l Conf. Machine Learning, pp. 1151-1157, 2007. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 13
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient Feature Selection via Analysis of Relevance and Redundancy" J. Machine Learning Research, vol.5, pp. 1205-1224, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol.3, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, " IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. Dy and C.E. Brodley, "Feature Selection for Unsupervised Learning," J. Machine Learning Research, vol.5, pp. 845-889, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 845-889
    • Dy, J.1    Brodley, C.E.2
  • 20
    • 0035651709 scopus 로고    scopus 로고
    • Bayesian inference for graphical factor analysis models
    • P. Giudici and E. Stanghellini, "Bayesian Inference for Graphical Factor Analysis Models," Psychometrika, vol.66, no.4, pp. 577-591, 2001.
    • (2001) Psychometrika , vol.66 , Issue.4 , pp. 577-591
    • Giudici, P.1    Stanghellini, E.2
  • 22
    • 60849115541 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear inlaying
    • Feb.
    • Y. Hou, P. Zhang, X. Xu, X. Zhang, and W. Li, "Nonlinear Dimensionality Reduction by Locally Linear Inlaying," IEEE Trans. Neural Networks, vol.20, no.2, pp. 300-315, Feb. 2009.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.2 , pp. 300-315
    • Hou, Y.1    Zhang, P.2    Xu, X.3    Zhang, X.4    Li, W.5
  • 24
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • July
    • L. Wang, N. Zhou, and F. Chu, "A General Wrapper Approach to Selection of Class-Dependent Features," IEEE Trans. Neural Networks, vol.19, no.7, pp. 1267-1278, July 2008.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.7 , pp. 1267-1278
    • Wang, L.1    Zhou, N.2    Chu, F.3
  • 25
    • 67349169465 scopus 로고    scopus 로고
    • Multiclass MTS for simultaneous feature selection and classification
    • Feb.
    • C. Su and Y. Hsiao, "Multiclass MTS for Simultaneous Feature Selection and Classification," IEEE Trans. Knowledge and Data Eng., vol.21, no.2, pp. 192-205, Feb. 2009.
    • (2009) IEEE Trans. Knowledge and Data Eng. , vol.21 , Issue.2 , pp. 192-205
    • Su, C.1    Hsiao, Y.2
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol.290, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 28
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Z. Zhang and H. Zha, "Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment," SIAM J. Scientific Computing, vol.26, no.1, pp. 313-338, 2004.
    • (2004) SIAM J. Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 29
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • S. Gerard and C. Buckley, "Term-Weighting Approaches in Automatic Text Retrieval," Information Processing and Management, vol.24, no.5, pp. 513-523, 1988.
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 513-523
    • Gerard, S.1    Buckley, C.2
  • 30
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Y. Yang and X. Liu, "A Re-Examination of Text Categorization Methods," Proc. SIGIR Conf., pp. 42-49, 1999.
    • (1999) Proc. SIGIR Conf. , pp. 42-49
    • Yang, Y.1    Liu, X.2
  • 31
    • 38149034408 scopus 로고    scopus 로고
    • High-dimensional entropy estimation for finite accuracy data: R-nn entropy estimator
    • Springer
    • J. Kybic, "High-Dimensional Entropy Estimation for Finite Accuracy Data: R-nn Entropy Estimator," Lecture Notes in Computer Science (LNCS), pp. 569-580, Springer, 2007.
    • (2007) Lecture Notes in Computer Science (LNCS) , pp. 569-580
    • Kybic, J.1
  • 32
    • 0032641874 scopus 로고    scopus 로고
    • Estimation of the information by an adaptive partitioning of the observation space
    • May
    • G. Darbellay and I. Vajda, "Estimation of the Information by an Adaptive Partitioning of the Observation Space," IEEE Trans. Information Theory, vol.45, no.4, pp. 1315-1321, May 1999.
    • (1999) IEEE Trans. Information Theory , vol.45 , Issue.4 , pp. 1315-1321
    • Darbellay, G.1    Vajda, I.2
  • 36
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Y. Yang and O.J. Pedersen, "A Comparative Study on Feature Selection in Text Categorization," Proc. Int'l Conf. Machine Learning, pp. 412-420, 1997.
    • (1997) Proc. Int'l Conf. Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, O.J.2
  • 37
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms applications
    • A. Hyvainen and E. Oja, "Independent Component Analysis: Algorithms Applications," Neural Networks, vol.13, nos. 4/5, pp. 411-430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvainen, A.1    Oja, E.2
  • 38
    • 0028416938 scopus 로고
    • Independent component analysis-a new concept?
    • P. Comon, "Independent Component Analysis-a New Concept?" Signal Processing, vol.36, pp. 287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 39
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • A. Hyvainen, "Survey on Independent Component Analysis," Neural Computing Surveys, vol.2, pp. 94-128, 1999.
    • (1999) Neural Computing Surveys , vol.2 , pp. 94-128
    • Hyvainen, A.1
  • 40
    • 51249181779 scopus 로고
    • A new polynomial time algorithm for linear programming
    • N. Karmarkar, "A New Polynomial Time Algorithm for Linear Programming," Combinatorica, vol.4, no.4, pp. 373-395, 1984.
    • (1984) Combinatorica , vol.4 , Issue.4 , pp. 373-395
    • Karmarkar, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.