메뉴 건너뛰기




Volumn 4, Issue 3, 2010, Pages 245-263

An A-Team approach to learning classifiers from distributed data sources

Author keywords

A Team; Data reduction; Distributed data; Distributed data mining; JABAT; Learning classifiers; Prototype selection

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING;

EID: 77954482096     PISSN: 17515858     EISSN: 17515866     Source Type: Journal    
DOI: 10.1504/IJIIDS.2010.034082     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA, available at
    • Asuncion, A. and Newman, D.J. (2007) UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, available at http://www.ics.uci.edu/ mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 3142729923 scopus 로고    scopus 로고
    • Teams of autonomous agents for job-shop scheduling problems: An experimental study
    • Aydin, M.E. and Fogarty, T.C. (2004) 'Teams of autonomous agents for job-shop scheduling problems: an experimental study', Journal of Intelligent Manufacturing, Vol.15, No.4, pp.455-462.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , Issue.4 , pp. 455-462
    • Aydin, M.E.1    Fogarty, T.C.2
  • 4
    • 0028257732 scopus 로고
    • Democracy in neural nets: Voting schemes for classification
    • Battiti, R. and Coalla, A.M. (1994) 'Democracy in neural nets: voting schemes for classification', Neural Network, Vol.7, No.4, pp.691-707.
    • (1994) Neural Network , vol.7 , Issue.4 , pp. 691-707
    • Battiti, R.1    Coalla, A.M.2
  • 5
    • 0032645080 scopus 로고
    • An empirical comparison of voting classification algorithhms: Bagging, boosting and variants
    • Nos. 1-2, Kluwer Academic Publishers, Boston
    • Bauer, E. and Kohavi, R. (1994) 'An empirical comparison of voting classification algorithhms: bagging, boosting and variants', Machine Learning, Vol.36, Nos. 1-2, Kluwer Academic Publishers, Boston.
    • (1994) Machine Learning , vol.36
    • Bauer, E.1    Kohavi, R.2
  • 8
    • 33644641221 scopus 로고    scopus 로고
    • On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining
    • Cano, J.R., Herrera, F. and Lozano, M. (2006) 'On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining', Applied Soft Computing, Vol.6, pp.323-332.
    • (2006) Applied Soft Computing , vol.6 , pp. 323-332
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • Caragea, D., Silvescu, A. and Honavar, V. (2003) 'A framework for learning from distributed data using sufficient statistics and its application to learning decision trees', International Journal of Hybrid Intelligent Systems, Vol.1, Nos. 1-2, pp.80-89.
    • (2003) International Journal of Hybrid Intelligent Systems , vol.1 , Issue.1-2 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 10
    • 37249006162 scopus 로고    scopus 로고
    • An approach to instance reduction in supervised learning
    • in Coenen, F., Preece, A. and Macintosh, A. (Eds.): XX, Springer, London
    • Czarnowski, I. and Jedrzejowicz, P. (2004) 'An approach to instance reduction in supervised learning', in Coenen, F., Preece, A. and Macintosh, A. (Eds.): Research and Development in Intelligent Systems XX, Springer, London, pp.267-282.
    • (2004) Research and Development in Intelligent Systems , pp. 267-282
    • Czarnowski, I.1    Jedrzejowicz, P.2
  • 15
    • 0002113656 scopus 로고    scopus 로고
    • Social learning algorithm as a tool for solving some difficult scheduling problems
    • Jedrzejowicz, P. (1999) 'Social learning algorithm as a tool for solving some difficult scheduling problems', Foundation of Computing and Decision Sciences, Vol.24, pp.51-66.
    • (1999) Foundation of Computing and Decision Sciences , vol.24 , pp. 51-66
    • Jedrzejowicz, P.1
  • 17
    • 0001282382 scopus 로고    scopus 로고
    • Collective data mining: A new perspective toward distributed data analysis
    • in Kargupta, H. and Chan, P. (Eds.): , AAAI/MIT Press
    • Kargupta, H., Park, B-H., Hershberger, D. and Johnson, E. (1999) 'Collective data mining: a new perspective toward distributed data analysis', in Kargupta, H. and Chan, P. (Eds.): Accepted in the Advances in Distributed Data Mining, AAAI/MIT Press.
    • (1999) Accepted in the Advances in Distributed Data Mining
    • Kargupta, H.1    Park, B-H.2    Hershberger, D.3    Johnson, E.4
  • 22
    • 0346736635 scopus 로고    scopus 로고
    • A component-based architecture for problem solving environments
    • Marinescu, D.C. and Boloni, L. (2000) 'A component-based architecture for problem solving environments', Mathematics and Computers in Simulation, Vol.54, pp.279-293.
    • (2000) Mathematics and Computers in Simulation , vol.54 , pp. 279-293
    • Marinescu, D.C.1    Boloni, L.2
  • 24
    • 0345982691 scopus 로고    scopus 로고
    • Agents in overalls: Experiences and issues in the development and deployment of industrial agent-based systems
    • Parunak, H.V.D. (2000) 'Agents in overalls: experiences and issues in the development and deployment of industrial agent-based systems', International Journal of Cooperative Information Systems, Vol.9, No.3, pp.209-228.
    • (2000) International Journal of Cooperative Information Systems , vol.9 , Issue.3 , pp. 209-228
    • Parunak, H.V.D.1
  • 25
    • 0002522158 scopus 로고    scopus 로고
    • Meta-learning in distributed data mining systems: Issues and approaches
    • in Kargupta, H. and Chan, P. (Eds.): Chapter 3, AAAI/MIT Press
    • Prodromidis, A., Chan, P.K. and Stolfo, S.J. (2000) 'Meta-learning in distributed data mining systems: issues and approaches', in Kargupta, H. and Chan, P. (Eds.): Advances in Distributed and Parallel Knowledge Discovery, Chapter 3, AAAI/MIT Press.
    • (2000) Advances in Distributed and Parallel Knowledge Discovery
    • Prodromidis, A.1    Chan, P.K.2    Stolfo, S.J.3
  • 26
    • 0030370417 scopus 로고
    • C4.5: Programs for Machine Learning, Morgan Kaufmann, SanMateo, CA. Quinlan, J.R. (1996) 'Bagging, boosting and C4.5
    • Quinlan, J.R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann, SanMateo, CA. Quinlan, J.R. (1996) 'Bagging, boosting and C4.5', Proceedings of the 13th National Conference on Artificial Intelligence, pp.725-730.
    • (1993) Proceedings of the 13th National Conference on Artificial Intelligence , pp. 725-730
    • Quinlan, J.R.1
  • 27
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithm
    • Skalak, D.B. (1994) 'Prototype and feature selection by sampling and random mutation hill climbing algorithm', Proceedings of the International Conference on Machine Learning, pp.293-301.
    • (1994) Proceedings of the International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 30
    • 47249091054 scopus 로고    scopus 로고
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems (EUNITE) , available at, accessed on 1 September
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems (EUNITE) (2002) EUNITE World Competition in Domain of Intelligent Technologies, available at http://neuron.tuke.sk/competition2, accessed on 1 September.
    • (2002) EUNITE World Competition in Domain of Intelligent Technologies
  • 31
    • 84886362839 scopus 로고    scopus 로고
    • Model combination in the multiple-data-base scenario
    • in Maarten van Someren and Garhard Widmer (Eds.):, LNCS/LNAI 1224, Springer-Verlag, New York
    • Ting, K.M. and Low, B.T. (1997) 'Model combination in the multiple-data-base scenario', in Maarten van Someren and Garhard Widmer (Eds.): Machine Learning, ECML-97, LNCS/LNAI 1224, Springer-Verlag, New York, pp.250-265.
    • (1997) Machine Learning, ECML-97 , pp. 250-265
    • Ting, K.M.1    Low, B.T.2
  • 32
    • 2342557114 scopus 로고    scopus 로고
    • Clustering classifiers for knowledge discovery from physical distributed database
    • Tsoumakas, G., Angelis, L. and Vlahavas, I. (2004) 'Clustering classifiers for knowledge discovery from physical distributed database', Data and Knowledge Engineering, Vol.49, No.3, pp.223-242.
    • (2004) Data and Knowledge Engineering , vol.49 , Issue.3 , pp. 223-242
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 33
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithm
    • Kluwer Academic Publishers, Boston
    • Wilson, D.R. and Martinez, T.R. (2000) 'Reduction techniques for instance-based learning algorithm', Machine Learning, Vol.33, No.3, pp.257-286, Kluwer Academic Publishers, Boston.
    • (2000) Machine Learning , vol.33 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 35
    • 47249124223 scopus 로고    scopus 로고
    • Mining local data sources for learning global cluster model via local model exchange
    • Zhang, X-F., Lam, C-M. and Cheung, W.K. (2004) 'Mining local data sources for learning global cluster model via local model exchange', IEEE Intelligence Informatics Bulletine, Vol.4, No.2, pp.748-751.
    • (2004) IEEE Intelligence Informatics Bulletine , vol.4 , Issue.2 , pp. 748-751
    • Zhang, X-F.1    Lam, C-M.2    Cheung, W.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.