메뉴 건너뛰기




Volumn 5863 LNCS, Issue PART 1, 2009, Pages 425-432

Implementing learning on the SpiNNaker universal neural chip multiprocessor

Author keywords

Event Driven; Learning; Neural; Spiking; SpiNNaker; STDP

Indexed keywords

CHIP MULTIPROCESSOR; DATA REPRESENTATIONS; EVENT DRIVEN; EVENT MODEL; HIGH-PERFORMANCE HARDWARE; LEARNING MODELS; LEARNING RULES; MULTI-CHIP; NEURAL CHIPS; NEURAL HARDWARE; NEURAL SIMULATIONS; ON-CHIP LEARNING; RE-CONFIGURABLE;

EID: 76649135818     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-10677-4_48     Document Type: Conference Paper
Times cited : (11)

References (12)
  • 1
  • 3
    • 0029821128 scopus 로고    scopus 로고
    • A Neuronal Learning Rule for Sub-millisecond Temporal Coding
    • Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A Neuronal Learning Rule for Sub-millisecond Temporal Coding. Nature 383(6595), 76-78 (1996)
    • (1996) Nature , vol.383 , Issue.6595 , pp. 76-78
    • Gerstner, W.1    Kempter, R.2    van Hemmen, J.L.3    Wagner, H.4
  • 4
    • 0033860923 scopus 로고    scopus 로고
    • Competitive hebbian learning through spike-timing-dependent synaptic plasticity
    • Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919-926 (2000)
    • (2000) Nature Neuroscience , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.D.2    Abbott, L.F.3
  • 6
    • 0742268989 scopus 로고    scopus 로고
    • Simple Model of Spiking Neurons
    • Izhikevich, E.: Simple Model of Spiking Neurons. IEEE Trans. Neural Networks 14, 1569-1572 (2003)
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 1569-1572
    • Izhikevich, E.1
  • 8
    • 70349100028 scopus 로고    scopus 로고
    • The Deferred Event Model for Hardware-Oriented Spiking Neural Networks
    • Köppen, M, Kasabov, N, Coghill, G, eds, ICONIP 2008, Springer, Heidelberg
    • Rast, A., Jin, X., Khan, M.M., Furber, S.: The Deferred Event Model for Hardware-Oriented Spiking Neural Networks. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 1057-1064. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5507 , pp. 1057-1064
    • Rast, A.1    Jin, X.2    Khan, M.M.3    Furber, S.4
  • 9
    • 68849101118 scopus 로고    scopus 로고
    • Competitive STDP-based spike pattern learning
    • Masquelier, T., Guyonneau, R., Thorpe, S.J.: Competitive STDP-based spike pattern learning. Neural Computation 21(5), 1259-1276 (2009)
    • (2009) Neural Computation , vol.21 , Issue.5 , pp. 1259-1276
    • Masquelier, T.1    Guyonneau, R.2    Thorpe, S.J.3
  • 10
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: Computation with spikes
    • Izhikevich, E.: Polychronization: Computation with spikes. Neural Computation 18(2), 245-282 (2006)
    • (2006) Neural Computation , vol.18 , Issue.2 , pp. 245-282
    • Izhikevich, E.1
  • 12
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neuro-science 18(24), 10464-10472 (1998)
    • (1998) J. Neuro-science , vol.18 , Issue.24 , pp. 10464-10472
    • Bi, G.1    Poo, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.