메뉴 건너뛰기




Volumn 24, Issue 2, 2009, Pages 195-210

Relaxation penalties and priors for plausible modeling of nonidentied bias sources

Author keywords

Bias; Biostatistics; Causality; Epidemiology; Measurement error; Misclassication; Observational studies; Odds ratio; Relative risk; Risk analysis; Risk assessment; Selection bias; Validation

Indexed keywords


EID: 76349126008     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-STS291     Document Type: Article
Times cited : (44)

References (79)
  • 1
    • 0029981356 scopus 로고    scopus 로고
    • The analysis of categorical case-control data subject to nonignorable nonresponse
    • BAKER, S. G. (1996). The analysis of categorical case-control data subject to nonignorable nonresponse. Biometrics 52 362-369.
    • (1996) Biometrics , vol.52 , pp. 362-369
    • Baker, S.G.1
  • 4
    • 0001135785 scopus 로고
    • Sampling and Bayes inference in scientific modeling and robustness
    • BOX, G. E. P. (1980). Sampling and Bayes inference in scientific modeling and robustness. J. Roy. Statist. Soc. Ser. A 143 383-430.
    • (1980) J. Roy. Statist. Soc. Ser. A , vol.143 , pp. 383-430
    • Box, G.E.P.1
  • 5
    • 0014109237 scopus 로고
    • Pertinency of an extraneous variable
    • BROSS, I. D. J. (1967). Pertinency of an extraneous variable. Journal of Chronic Diseases 20 487-495.
    • (1967) Journal of Chronic Diseases , vol.20 , pp. 487-495
    • Bross, I.D.J.1
  • 6
    • 1442326306 scopus 로고    scopus 로고
    • Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures
    • BRUMBACK,B.A.,HERNAN,M.A.,HANEUSE,S.and ROBINS, J. M. (2004). Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Statist. Med. 23 749-767.
    • (2004) Statist. Med. , vol.23 , pp. 749-767
    • Brumback, B.A.1    Hernan, M.A.2    Haneuse, S.3    ROBINS, J.M.4
  • 7
    • 33846805720 scopus 로고    scopus 로고
    • Confidence intervals for multinomial logistic regression in sparse data
    • BULL,S.B.,LEWINGER,J.B.and LEE, S. S. F. (2007). Confidence intervals for multinomial logistic regression in sparse data. Statist. Med. 26 903-918.
    • (2007) Statist. Med. , vol.26 , pp. 903-918
    • Bull, S.B.1    Lewinger, J.B.2    LEE, S.S.F.3
  • 9
    • 0033475004 scopus 로고    scopus 로고
    • What works? Selectivity models and meta-analysis
    • COPAS, J. B. (1999). What works? Selectivity models and meta-analysis. J. R. Stat. Soc. Ser. B 162 95-109.
    • (1999) J. R. Stat. Soc. Ser. B , vol.162 , pp. 95-109
    • Copas, J.B.1
  • 10
    • 85042251851 scopus 로고
    • A note on partially Bayes inference and the linear model
    • COX, D. R. (1975). A note on partially Bayes inference and the linear model. Biometrika 62 651-654.
    • (1975) Biometrika , vol.62 , pp. 651-654
    • COX, D.R.1
  • 14
    • 0023571564 scopus 로고
    • A general approach to analyzing epidemiologic data that contain misclassification errors
    • ESPELAND,M.andHUI, S. L. (1987). A general approach to analyzing epidemiologic data that contain misclassification errors. Biometrics 43 1001-1012.
    • (1987) Biometrics , vol.43 , pp. 1001-1012
    • Espeland, M.1    Hui, S.L.2
  • 16
    • 0442309445 scopus 로고    scopus 로고
    • Identifiability, improper priors, and Gibbs sampling for generalized linear models
    • GELFAND,A.E.andSAHU, S. K. (1999). Identifiability, improper priors, and Gibbs sampling for generalized linear models. J. Amer. Statist. Assoc. 94 247-253.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 247-253
    • Gelfand, A.E.1    Sahu, S.K.2
  • 17
    • 57749122236 scopus 로고    scopus 로고
    • Adjusting for selection bias in retrospective case-control studies
    • GENELETTI,S.,RICEQUALITYSON,S.andBEST, N. (2009). Adjusting for selection bias in retrospective case-control studies. Biostatistics 10 17-31.
    • (2009) Biostatistics , vol.10 , pp. 17-31
    • Geneletti, S.1    Ricequalityson, S.2    Best, N.3
  • 18
    • 0004097012 scopus 로고
    • Univ. Minnesota Press, Minneapolis
    • GOOD, I. J. (1983). Good Thinking. Univ. Minnesota Press, Minneapolis.
    • (1983) Good Thinking
    • Good, I.J.1
  • 19
    • 43949122200 scopus 로고    scopus 로고
    • Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data (with discussion)
    • GOUBAR,A.,AEDES,A.E.,DEANGELIS,D.,MCGARRIGLE, C. A., MERCER,C.H.,TOOKEY,P.A.,FENTON,K.and GILL, O. N. (2008). Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data (with discussion). J. Roy. Statist. Soc. Ser. A 171 541-580.
    • (2008) J. Roy. Statist. Soc. Ser. A , vol.171 , pp. 541-580
    • Goubar, A.1    Aedes, A.E.2    Deangelis, D.3    Mcgarrigle, C.A.4    Mercer, C.H.5    Tookey, P.A.6    Fenton, K.7    GILL, O.N.8
  • 20
    • 0026595921 scopus 로고
    • A semi-Bayes approach to the analysis of correlated associations, with an application to an occupational cancer-mortality study
    • GREENLAND, S. (1992). A semi-Bayes approach to the analysis of correlated associations, with an application to an occupational cancer-mortality study. Statist. Med. 11 219-230.
    • (1992) Statist. Med. , vol.11 , pp. 219-230
    • Greenland, S.1
  • 21
    • 0033858016 scopus 로고    scopus 로고
    • When should epidemiologic regressions use random coefficients?
    • GREENLAND, S. (2000). When should epidemiologic regressions use random coefficients? Biometrics 56 915-921.
    • (2000) Biometrics , vol.56 , pp. 915-921
    • Greenland, S.1
  • 22
    • 0037361638 scopus 로고    scopus 로고
    • The impact of prior distributions for uncontrolled confounding and response bias: A case study of the relation of wire codes and magnetic fields to childhood leukemia
    • GREENLAND, S. (2003a). The impact of prior distributions for uncontrolled confounding and response bias: A case study of the relation of wire codes and magnetic fields to childhood leukemia. J. Amer. Statist. Assoc. 98 47-54.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 47-54
    • Greenland, S.1
  • 23
    • 0037366626 scopus 로고    scopus 로고
    • Generalized conjugate priors for Bayesian analysis of risk and survival regressions
    • GREENLAND, S. (2003b). Generalized conjugate priors for Bayesian analysis of risk and survival regressions. Biometrics 59 92-99.
    • (2003) Biometrics , vol.59 , pp. 92-99
    • Greenland, S.1
  • 24
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding versus collider-stratification bias
    • GREENLAND, S. (2003c). Quantifying biases in causal models: Classical confounding versus collider-stratification bias. Epidemiology 14 300-306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 25
    • 20144383829 scopus 로고    scopus 로고
    • Multiple-bias modeling for analysis of observational data (with discussion)
    • GREENLAND, S. (2005a). Multiple-bias modeling for analysis of observational data (with discussion). J. Roy. Statist. Soc. Ser. A 168 267-308.
    • (2005) J. Roy. Statist. Soc. Ser. A , vol.168 , pp. 267-308
    • Greenland, S.1
  • 26
    • 33745217857 scopus 로고    scopus 로고
    • Contribution to discussion of Prentice, Pettinger, and Anderson
    • GREENLAND, S. (2005b). Contribution to discussion of Prentice, Pettinger, and Anderson. Biometrics 61 920-921.
    • (2005) Biometrics , vol.61 , pp. 920-921
    • Greenland, S.1
  • 27
    • 33645315892 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiologic research. I. Foundations and basic methods (with comment and reply)
    • GREENLAND, S. (2006). Bayesian perspectives for epidemiologic research. I. Foundations and basic methods (with comment and reply). International Journal of Epidemiology 35 765-778.
    • (2006) International Journal of Epidemiology , vol.35 , pp. 765-778
    • Greenland, S.1
  • 28
    • 34447343362 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiologic research. II. Regression analysis
    • GREENLAND, S. (2007a). Bayesian perspectives for epidemiologic research. II. Regression analysis. International Journal of Epidemiology 36 195-202.
    • (2007) International Journal of Epidemiology , vol.36 , pp. 195-202
    • Greenland, S.1
  • 29
    • 34547529771 scopus 로고    scopus 로고
    • Prior data for non-normal priors
    • GREENLAND, S. (2007b). Prior data for non-normal priors. Statist. Med. 26 3578-3590.
    • (2007) Statist. Med. , vol.26 , pp. 3578-3590
    • Greenland, S.1
  • 30
    • 35348915983 scopus 로고    scopus 로고
    • Maximum-likelihood and closed-form estimators of epidemiologic measures under misclassification
    • GREENLAND, S. (2007c). Maximum-likelihood and closed-form estimators of epidemiologic measures under misclassification. J. Statist. Plann. Inference 138 528-538.
    • (2007) J. Statist. Plann. Inference , vol.138 , pp. 528-538
    • Greenland, S.1
  • 31
    • 70349351585 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiologic research III. Bias analysis via missing data methods
    • GREENLAND, S. (2009). Bayesian perspectives for epidemiologic research III. Bias analysis via missing data methods. International Journal of Epidemiology 38 1662-1673.
    • (2009) International Journal of Epidemiology , vol.38 , pp. 1662-1673
    • Greenland, S.1
  • 32
    • 15744391684 scopus 로고    scopus 로고
    • The value of risk-factor ("black-box") epidemiology (with discussion)
    • GREENLAND,S.,GAGO-DOMIGUEZ,M.and CASTELLAO,J.E. (2004). The value of risk-factor ("black-box") epidemiology (with discussion). Epidemiology 15 519-535.
    • (2004) Epidemiology , vol.15 , pp. 519-535
    • Greenland, S.1    Gago-Domiguez, M.2    Castellao, J.E.3
  • 33
    • 33645312703 scopus 로고    scopus 로고
    • Leukemia attributable to residential magnetic fields: Results from analyses allowing for study biases
    • GREENLAND,S.andKHEIFETS, L. (2006). Leukemia attributable to residential magnetic fields: Results from analyses allowing for study biases. Risk Analysis 26 471-482.
    • (2006) Risk Analysis , vol.26 , pp. 471-482
    • Greenland, S.1    Kheifets, L.2
  • 34
    • 84971280041 scopus 로고    scopus 로고
    • Bias analysis
    • 3rd ed. (K. J. Rothman, S. Greenland and T. L. Lash, eds.) Chapter. Lippincott-Williams-Wilkins, Philadelphia.
    • GREENLAND,S.andLASH, T. L. (2008). Bias analysis. In Modern Epidemiology, 3rd ed. (K. J. Rothman, S. Greenland and T. L. Lash, eds.) Chapter 19, 345-380. Lippincott-Williams-Wilkins, Philadelphia.
    • (2008) Modern Epidemiology , vol.19 , pp. 345-380
    • Greenland, S.1    Lash, T.L.2
  • 35
    • 0028243865 scopus 로고
    • The interpretation of multiplicative model parameters as standardized parameters
    • GREENLAND,S.andMALDONADO, G. (1994). The interpretation of multiplicative model parameters as standardized parameters. Statist. Med. 13 989-999.
    • (1994) Statist. Med. , vol.13 , pp. 989-999
    • Greenland, S.1    Maldonado, G.2
  • 37
    • 15844429309 scopus 로고    scopus 로고
    • On model expansion, model contraction, identifiability, and prior information: Two illustrative scenarios involving mismeasured variables (with discussion)
    • GUSTAFSON, P. (2005). On model expansion, model contraction, identifiability, and prior information: Two illustrative scenarios involving mismeasured variables (with discussion). Statist. Sci. 20 111-140.
    • (2005) Statist. Sci. , vol.20 , pp. 111-140
    • Gustafson, P.1
  • 38
    • 33745624487 scopus 로고    scopus 로고
    • The performance of random coefficient regression in accounting for residual confounding
    • GUSTAFSON,P.andGREENLAND, S. (2006). The performance of random coefficient regression in accounting for residual confounding. Biometrics 62 760-768.
    • (2006) Biometrics , vol.62 , pp. 760-768
    • Gustafson, P.1    Greenland, S.2
  • 39
    • 77955139917 scopus 로고    scopus 로고
    • Interval estimation for messy observational data. To appear
    • GUSTAFSON,P.andGREENLAND, S. (2010). Interval estimation for messy observational data. To appear.
    • (2010)
    • Gustafson, P.1    Greenland, S.2
  • 40
    • 0034997533 scopus 로고    scopus 로고
    • Case-control analysis with partial knowledge of exposure misclassification probabilities
    • GUSTAFSON.P.,LE,N.D.andSASKIN, R. (2001). Case-control analysis with partial knowledge of exposure misclassification probabilities. Biometrics 57 598-609.
    • (2001) Biometrics , vol.57 , pp. 598-609
    • Gustafso.N.P.Le, N.D.1    Saskin, R.2
  • 43
    • 0036205370 scopus 로고    scopus 로고
    • Being skeptical about meta-analyses: A Bayesian perspective on magnesium trials in myocardial infarction
    • appendix
    • HIGGINS,J.P.T.andSPIEGELHALTER, D. J. (2002). Being skeptical about meta-analyses: A Bayesian perspective on magnesium trials in myocardial infarction. International Journal of Epidemiology 31 96-104, appendix.
    • (2002) International Journal of Epidemiology , vol.31 , pp. 96-104
    • Higgins, J.P.T.1    Spiegelhalter, D.J.2
  • 44
    • 0018987004 scopus 로고
    • Estimating the error rates of diagnostic tests
    • HUI,S.L.andWALTER, S. D. (1980). Estimating the error rates of diagnostic tests. Biometrics 36 167-171.
    • (1980) Biometrics , vol.36 , pp. 167-171
    • HUI, S.L.1    Walter, S.D.2
  • 46
    • 11144322968 scopus 로고    scopus 로고
    • Families of distributions arising from distributions of order statistics
    • JONES, M. C. (2004). Families of distributions arising from distributions of order statistics. Test 13 1-44.
    • (2004) Test , vol.13 , pp. 1-44
    • Jones, M.C.1
  • 47
    • 0028830661 scopus 로고
    • Bayesian estimation of disease prevalence and parameters for diagnostic tests in the absence of a gold standard
    • JOSEPH,L.,GYORKOS,T.W.andCOUPAL, L. (1995). Bayesian estimation of disease prevalence and parameters for diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141 263-272.
    • (1995) American Journal of Epidemiology , vol.141 , pp. 263-272
    • Joseph, L.1    Gyorkos, T.W.2    Coupal, L.3
  • 48
    • 0001127365 scopus 로고
    • Subjective Bayesian analysis for surveys with missing data
    • Erratum (1996): The Statistician 45 539
    • KADANE, J. B. (1993). Subjective Bayesian analysis for surveys with missing data. The Statistician 42 415-426. Erratum (1996): The Statistician 45 539.
    • (1993) The Statistician , vol.42 , pp. 415-426
    • Kadane, J.B.1
  • 49
    • 0024564610 scopus 로고
    • Risk factors for sudden infant death syndrome in the U.S. Collaborative Perinatal Project
    • KRAUS,J.F.,GREENLAND,S.andBULTERYS, M. G. (1989). Risk factors for sudden infant death syndrome in the U.S. Collaborative Perinatal Project. International Journal of Epidemiology 18 113-120.
    • (1989) International Journal of Epidemiology , vol.18 , pp. 113-120
    • Kraus, J.F.1    Greenland, S.2    Bulterys, M.G.3
  • 50
    • 0013091927 scopus 로고    scopus 로고
    • Semi-automated sensitivity analysis to assess systematic errors in observational epidemiologic data
    • LASH,T.L.andFINK, A. K. (2003). Semi-automated sensitivity analysis to assess systematic errors in observational epidemiologic data. Epidemiology 14 451-458.
    • (2003) Epidemiology , vol.14 , pp. 451-458
    • Lash, T.L.1    Fink, A.K.2
  • 51
    • 2442678802 scopus 로고    scopus 로고
    • Those confounded vitamins: What can we learn from the differences between observational versus randomized trial evidence?
    • LAWLOR,D.A.,DAVEY SMITH,G.,BRUCKDORFER,K.R., KUNDU,D.andEBRAHIM, S. (2004). Those confounded vitamins: What can we learn from the differences between observational versus randomized trial evidence? Lancet 363 1724-1727.
    • (2004) Lancet , vol.363 , pp. 1724-1727
    • Lawlor, D.A.1    Smith, D.G.2    Bruckdorfer, K.R.3    Kundu, D.4    Ebrahim, S.5
  • 52
    • 0013046913 scopus 로고
    • False models and post-data model construction
    • LEAMER, E. E. (1974). False models and post-data model construction. J. Amer. Statist. Assoc. 69 122-131.
    • (1974) J. Amer. Statist. Assoc. , vol.69 , pp. 122-131
    • Leamer, E.E.1
  • 55
    • 0036971491 scopus 로고    scopus 로고
    • A note on estimating crude odds ratios in case-control studies with differentially misclassified exposure
    • LYLES, R. H. (2002). A note on estimating crude odds ratios in case-control studies with differentially misclassified exposure. Biometrics 58 1034-1037.
    • (2002) Biometrics , vol.58 , pp. 1034-1037
    • Lyles, R.H.1
  • 56
    • 46949084422 scopus 로고    scopus 로고
    • Adjusting a relative-risk estimate for study imperfections
    • MALDONADO, G. (2008). Adjusting a relative-risk estimate for study imperfections. Journal of Epidemiology and Community Health 62 655-663.
    • (2008) Journal of Epidemiology and Community Health , vol.62 , pp. 655-663
    • Maldonado, G.1
  • 57
    • 34248379740 scopus 로고    scopus 로고
    • Bayesian sensitivity analysis for unmeasured confounding in observational studies
    • MCCANDLESS,L.C.,GUSTAFSON,P.andLEVY, A. (2007). Bayesian sensitivity analysis for unmeasured confounding in observational studies. Statist. Med. 26 2331-2347.
    • (2007) Statist. Med. , vol.26 , pp. 2331-2347
    • Mccandless, L.C.1    Gustafson, P.2    Levy, A.3
  • 59
    • 63249101777 scopus 로고    scopus 로고
    • Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment
    • MESSER,K.andNATARAJAN, L. (2008). Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment. Statist. Med. 27 6332-6350.
    • (2008) Statist. Med. , vol.27 , pp. 6332-6350
    • Messer, K.1    Natarajan, L.2
  • 60
  • 61
    • 65649121914 scopus 로고    scopus 로고
    • Using Bayesian graphical models to model biases in observational studies and to combine multiple data sources: Application to low birthweight and water disinfection by-products
    • MOLITOR,J.,JACKSON,C.,BEST,N.B.andRICEQUALITYSON, S. (2008). Using Bayesian graphical models to model biases in observational studies and to combine multiple data sources: Application to low birthweight and water disinfection by-products. J. Roy. Statist. Soc. Ser. A 172 615-638.
    • (2008) J. Roy. Statist. Soc. Ser. A , vol.172 , pp. 615-638
    • Molitor, J.1    Jackson, C.2    Best, N.B.3    RicequaliTyson, S.4
  • 62
    • 0031536541 scopus 로고    scopus 로고
    • On the efficacy of Bayesian inference for nonidentifiable models
    • NEATH,A.A.andSAMANIEGO, F. J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. Amer. Statist. 51 225-232.
    • (1997) Amer. Statist. , vol.51 , pp. 225-232
    • Neath, A.A.1    Samaniego, F.J.2
  • 63
    • 0013045232 scopus 로고    scopus 로고
    • Quantifying and reporting uncertainty from systematic errors
    • PHILLIPS, C. V. (2003). Quantifying and reporting uncertainty from systematic errors. Epidemiology 14 459-466.
    • (2003) Epidemiology , vol.14 , pp. 459-466
    • Phillips, C.V.1
  • 65
    • 0000764987 scopus 로고    scopus 로고
    • Choice as an alternative to control in observational studies (with discussion)
    • ROSENBAUM, P. R. (1999). Choice as an alternative to control in observational studies (with discussion). Statist. Sci. 14 259-304.
    • (1999) Statist. Sci. , vol.14 , pp. 259-304
    • Rosenbaum, P.R.1
  • 66
    • 0004228121 scopus 로고    scopus 로고
    • Observational Studies
    • 2nd ed. Springer, New York
    • ROSENBAUM, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
    • (2002)
    • Rosenbaum, P.R.1
  • 68
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • SCHARFSTEIN,D.O.,ROTNITSKY,A.andROBINS,J.M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. J. Amer. Statist. Assoc. 94 1096-1120.
    • (1999) J. Amer. Statist. Assoc , vol.94 , pp. 1096-1120
    • Scharfstein, D.O.1    Rotnitsky, A.2    Robins, J.M.3
  • 69
    • 2942658011 scopus 로고    scopus 로고
    • Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes
    • SCHARFSTEIN,D.O.,DANIELS,M.J.andROBINS,J.M. (2003). Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 4 495-512.
    • (2003) Biostatistics , vol.4 , pp. 495-512
    • Scharfstein, D.O.1    Daniels, M.J.2    Robins, J.M.3
  • 70
    • 79959343937 scopus 로고    scopus 로고
    • Error-free milestones in error-prone measurements
    • To appear
    • SMALL,D.R.andROSENBAUM, P. R. (2009). Error-free milestones in error-prone measurements. Ann. Appl. Statist. To appear.
    • (2009) Ann. Appl. Statist.
    • Small, D.R.1    Rosenbaum, P.R.2
  • 71
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani R1
  • 72
    • 0001105923 scopus 로고
    • Common structure of smoothing techniques in statistics
    • TITTERINGTON, D. M. (1985). Common structure of smoothing techniques in statistics. Internat. Statist. Rev. 53 141-170.
    • (1985) Internat. Statist. Rev. , vol.53 , pp. 141-170
    • Titterington, D.M.1
  • 74
    • 33750348204 scopus 로고    scopus 로고
    • Ignorance and uncertainty regions as inferential tools in a sensitivity analysis
    • VANSTEELANDT,S.,GOETGHEBEUR,E.,KENWARD,M.G.and MOLENBERGHS, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statist. Sinica 16 953-980.
    • (2006) Statist. Sinica , vol.16 , pp. 953-980
    • Vansteelandt, S.1    Goetghebeur, E.2    Kenward, M.G.3    Molenberghs, G.4
  • 75
    • 0020333134 scopus 로고
    • Anamorphic analysis: Sampling and estimation for covariate effects when both exposure and disease are known
    • WALKER, A. M. (1982). Anamorphic analysis: Sampling and estimation for covariate effects when both exposure and disease are known. Biometrics 38 1025-1032.
    • (1982) Biometrics , vol.38 , pp. 1025-1032
    • Walker, A.M.1
  • 78
    • 0020086484 scopus 로고
    • A two-stage design for the study of the relationship between a rare exposure and a rare disease
    • WHITE, J. E. (1982). A two-stage design for the study of the relationship between a rare exposure and a rare disease. American Journal of Epidemiology 115 119-128.
    • (1982) American Journal of Epidemiology , vol.115 , pp. 119-128
    • White, J.E.1
  • 79
    • 0013140520 scopus 로고
    • Case-control studies: Assessing the effect of a confounding factor
    • YANAGAWA, T. (1984). Case-control studies: Assessing the effect of a confounding factor. Biometrika 71 191-194.
    • (1984) Biometrika , vol.71 , pp. 191-194
    • Yanagawa, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.