-
1
-
-
0035228279
-
Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis
-
Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65:41-47.
-
(2001)
Biosci. Biotechnol. Biochem.
, vol.65
, pp. 41-47
-
-
Ali, M.K.1
Hayashi, H.2
Karita, S.3
Goto, M.4
Kimura, T.5
Sakka, K.6
Ohmiya, K.7
-
2
-
-
11144224089
-
The use of forced protein evolution to investigate and improve stability of family 10 xylanases
-
Andrews, S. R., E. J. Taylor, G. Pell, F. Vincent, V. M.-A. Ducros, G. J. Davies, J. H. Lakey, and H. J. Gilbert. 2004. The use of forced protein evolution to investigate and improve stability of family 10 xylanases. J. Biol. Chem. 279:54369-54379.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 54369-54379
-
-
Andrews, S.R.1
Taylor, E.J.2
Pell, G.3
Vincent, F.4
Ducros, V.M.-A.5
Davies, G.J.6
Lakey, J.H.7
Gilbert, H.J.8
-
3
-
-
33845868819
-
Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium
-
Araki, R., S. Karita, A. Tanaka, T. Kimura, and K. Sakka. 2006. Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium. Biosci. Biotechnol. Biochem. 70:3039-3041.
-
(2006)
Biosci. Biotechnol. Biochem.
, vol.70
, pp. 3039-3041
-
-
Araki, R.1
Karita, S.2
Tanaka, A.3
Kimura, T.4
Sakka, K.5
-
4
-
-
32144432437
-
The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling
-
DOI 10.1093/bioinformatics/bti770
-
Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195-201. (Pubitemid 43205406)
-
(2006)
Bioinformatics
, vol.22
, Issue.2
, pp. 195-201
-
-
Arnold, K.1
Bordoli, L.2
Kopp, J.3
Schwede, T.4
-
5
-
-
0028913985
-
A modular xylanase containing a novel non-catalytic xylanspecific binding domain
-
Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylanspecific binding domain. Biochem. J. 307:191-195.
-
(1995)
Biochem. J.
, vol.307
, pp. 191-195
-
-
Black, G.W.1
Hazlewood, G.P.2
Millward-Sadler, S.J.3
Laurie, J.I.4
Gilbert, H.J.5
-
6
-
-
1542615145
-
Glycoforms of beta-lactoglobulin with improved thermostability and preserved structural packing
-
Broersen, K., A. G. Voragen, R. J. Hamer, and H. H. De Jongh. 2004. Glycoforms of beta-lactoglobulin with improved thermostability and preserved structural packing. Biotechnol. Bioeng. 86:78-87.
-
(2004)
Biotechnol. Bioeng.
, vol.86
, pp. 78-87
-
-
Broersen, K.1
Voragen, A.G.2
Hamer, R.J.3
De Jongh, H.H.4
-
7
-
-
0034595226
-
The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: Structure and biochemistry of the Clostridium thermocellum X6b domain
-
Charnock, S. J., D. N. Bolam, J. P. Turkenburg, H. J. Gilbert, L. M. Ferreira, G. J. Davies, and C. M. Fontes. 2000. The X6 " thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39:5013-5021.
-
(2000)
Biochemistry
, vol.39
, pp. 5013-5021
-
-
Charnock, S.J.1
Bolam, D.N.2
Turkenburg, J.P.3
Gilbert, H.J.4
Ferreira, L.M.5
Davies, G.J.6
Fontes, C.M.7
-
8
-
-
0346846691
-
Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms
-
Chen, B., R. Bautista, K. Yu, G. A. Zapata, A. G. Mulkerrin, and S. M. Chamow. 2003. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm. Res. 20:1952-1960.
-
(2003)
Pharm. Res.
, vol.20
, pp. 1952-1960
-
-
Chen, B.1
Bautista, R.2
Yu, K.3
Zapata, G.A.4
Mulkerrin, A.G.5
Chamow, S.M.6
-
9
-
-
0032248002
-
Recombinant his-tagged DNA polymerase I. Cloning, purification and partial characterization of Thermus thermophilus recombinant DNA polymerase
-
Dabrowski, S., and J. Kur. 1998. Recombinant His-tagged DNA polymerase I. Cloning, purification and partial characterization of Thermus thermophilus recombinant DNA polymerase. Acta Biochim. Pol. 45:653-660.
-
(1998)
Acta Biochim. Pol.
, vol.45
, pp. 653-660
-
-
Dabrowski, S.1
Kur, J.2
-
10
-
-
0141539507
-
6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: Application in PCR
-
6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr. Purif. 31:72-78.
-
(2003)
Protein Expr. Purif.
, vol.31
, pp. 72-78
-
-
Dabrowski, S.1
Ahring, B.K.2
-
12
-
-
0034725651
-
Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A
-
Ducros, V., S. J. Charnock, U. Derewenda, Z. S. Derewenda, Z. Dauter, C. Dupont, F. Shareck, R. Morosoli, D. Kluepfel, and G. J. Davies. 2000. Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem. 275:23020-23026.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23020-23026
-
-
Ducros, V.1
Charnock, S.J.2
Derewenda, U.3
Derewenda, Z.S.4
Dauter, Z.5
Dupont, C.6
Shareck, F.7
Morosoli, R.8
Kluepfel, D.9
Davies, G.J.10
-
13
-
-
76149096008
-
-
Reference deleted
-
Reference deleted.
-
-
-
-
14
-
-
1542274526
-
Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86
-
Fujimoto, Z., S. Kaneko, A. Kuno, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279:9606-9614.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 9606-9614
-
-
Fujimoto, Z.1
Kaneko, S.2
Kuno, A.3
Kobayashi, H.4
Kusakabe, I.5
Mizuno, H.6
-
15
-
-
26244468772
-
Reclassification of Nonomuraea flexuosa
-
(Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev.
-
Goodfellow, M., L. A. Maldonado, and E. T. Quintana. 2005. Reclassification of Nonomuraea flexuosa (Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 55: 1979-1983.
-
(2005)
Int. J. Syst. Evol. Microbiol.
, vol.55
, pp. 1979-1983
-
-
Goodfellow, M.1
Maldonado, L.A.2
Quintana, E.T.3
-
16
-
-
0344406096
-
Three-dimensional structures of thermophilic -1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa: Comparison of twelve xylanases in relation to their thermal stability
-
Hakulinen, N., O. Turunen, J. Jänis, M. Leisola, and J. Rouvinen. 2003. Three-dimensional structures of thermophilic -1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa: comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270:1399-1412.
-
(2003)
Eur. J. Biochem.
, vol.270
, pp. 1399-1412
-
-
Hakulinen, N.1
Turunen, O.2
Jänis, J.3
Leisola, M.4
Rouvinen, J.5
-
17
-
-
0002364468
-
Production and properties of xylanases from thermophilic actinomycetes
-
Holtz, C., H. Kaspari, and J. H. Klemme. 1991. Production and properties of xylanases from thermophilic actinomycetes. Antonie Van Leeuwenhoek 59: 1-7.
-
(1991)
Antonie Van Leeuwenhoek
, vol.59
, pp. 1-7
-
-
Holtz, C.1
Kaspari, H.2
Klemme, J.H.3
-
18
-
-
20444366604
-
Deglycosylation of glucoamylase from Aspergillus niger: Effects on structure, activity and stability
-
Jafari-Aghdam, J., K. Khajeh, B. Ranjbar, and M. Nemat-Gorgani. 2005. Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim. Biophys. Acta 1750:61-68.
-
(2005)
Biochim. Biophys. Acta
, vol.1750
, pp. 61-68
-
-
Jafari-Aghdam, J.1
Khajeh, K.2
Ranjbar, B.3
Nemat-Gorgani, M.4
-
19
-
-
0036125060
-
Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli
-
DOI 10.1046/j.1432-1033.2002.02790.x
-
Job, V., G. Molla, M. S. Pilone, and L. Pollegioni. 2002. Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur. J. Biochem. 269:1456-1463. (Pubitemid 34227086)
-
(2002)
European Journal of Biochemistry
, vol.269
, Issue.5
, pp. 1456-1463
-
-
Job, V.1
Molla, G.2
Pilone, M.S.3
Pollegioni, L.4
-
20
-
-
49449116955
-
Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling
-
Kamondi, S., A. Szilágyi, L. Barna, and P. Závodszky. 2008. Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Biochem. Biophys. Res. Commun. 374:725-730.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.374
, pp. 725-730
-
-
Kamondi, S.1
Szilágyi, A.2
Barna, L.3
Závodszky, P.4
-
21
-
-
0042063909
-
Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan
-
Kittur, F. S., S. L. Mangala, A. A. Rusd, M. Kitaoka, H. Tsujibo, and K. Hayashi. 2003. Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett. 549:147-151.
-
(2003)
FEBS Lett.
, vol.549
, pp. 147-151
-
-
Kittur, F.S.1
Mangala, S.L.2
Rusd, A.A.3
Kitaoka, M.4
Tsujibo, H.5
Hayashi, K.6
-
22
-
-
21344465648
-
Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: Isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei
-
Leskinen, S., A. Mäntylä, R. Fagerstörm, J. Vehmaanperä, R. Lantto, M. Paloheimo, and P. Suominen. 2005. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl. Microbiol. Biotechnol. 67:495-505.
-
(2005)
Appl. Microbiol. Biotechnol.
, vol.67
, pp. 495-505
-
-
Leskinen, S.1
Mäntylä, A.2
Fagerstörm, R.3
Vehmaanperä, J.4
Lantto, R.5
Paloheimo, M.6
Suominen, P.7
-
23
-
-
0033567040
-
High resolution structure and sequence of T. aurantiacus xylanase I: Implications for the evolution of thermostability in family 10 xylanases and enzymes with βα-barrel architecture
-
Lo Leggio, L., S. Kalogiannis, M. K. Bhat, and R. W. Pickersgill. 1999. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with βα-barrel architecture. Proteins Struct. Funct. Genet. 36:295-306.
-
(1999)
Proteins Struct. Funct. Genet.
, vol.36
, pp. 295-306
-
-
Lo Leggio, L.1
Kalogiannis, S.2
Bhat, M.K.3
Pickersgill, R.W.4
-
24
-
-
33846127494
-
Fusion of carbohydrate binding modules from Thermotoga neopolitana with a family 10 xylanase from Bacillus halodurans S7
-
Mamo, G., R. Hatti-Kaul, and B. Mattiasson. 2007. Fusion of carbohydrate binding modules from Thermotoga neopolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 11:169-177.
-
(2007)
Extremophiles
, vol.11
, pp. 169-177
-
-
Mamo, G.1
Hatti-Kaul, R.2
Mattiasson, B.3
-
25
-
-
0037450178
-
Fusion of family VI cellulose-binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate binding capacity to insoluble xylan
-
Mangala, S. L., F. S. Kittur, M. Nishimoto, K. Sakka, K. Ohmiya, M. Kitaoka, and K. Hayashi. 2003. Fusion of family VI cellulose-binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate binding capacity to insoluble xylan. J. Mol. Catal. B Enzymol. 21:221-230.
-
(2003)
J. Mol. Catal. B Enzymol.
, vol.21
, pp. 221-230
-
-
Mangala, S.L.1
Kittur, F.S.2
Nishimoto, M.3
Sakka, K.4
Ohmiya, K.5
Kitaoka, M.6
Hayashi, K.7
-
26
-
-
0034127278
-
The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixedlinkage β-1,3/β-1,4-glucan
-
Meissner, K., D. Wassenberg, and W. Liebl. 2000. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixedlinkage β-1,3/β-1,4-glucan. Mol. Microbiol. 36:898-912.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 898-912
-
-
Meissner, K.1
Wassenberg, D.2
Liebl, W.3
-
27
-
-
0032078043
-
Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp
-
Morris, D. D., M. D. Gibbs, C. W. J. Chin, M.-H. Koh, K. K. Y. Wong, R. W. Allison, P. J. Nelson, and P. L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64:1759-1765.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1759-1765
-
-
Morris, D.D.1
Gibbs, M.D.2
Chin, C.W.J.3
Koh, M.-H.4
Wong, K.K.Y.5
Allison, R.W.6
Nelson, P.J.7
Bergquist, P.L.8
-
28
-
-
2142855140
-
High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure
-
Paloheimo, M., A. Mäntylä, J. Kallio, and P. Suominen. 2003. High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl. Environ. Microbiol. 69:7073-7082.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 7073-7082
-
-
Paloheimo, M.1
Mäntylä, A.2
Kallio, J.3
Suominen, P.4
-
29
-
-
0030452145
-
Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases?
-
Rixon, J. E., J. H. Clarke, G. P. Hazelwood, R. W. Hoyland, A. J. McCarthy, and H. J. Gilbert. 1996. Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases? Appl. Microbiol. Biotechnol. 46:514-520.
-
(1996)
Appl. Microbiol. Biotechnol.
, vol.46
, pp. 514-520
-
-
Rixon, J.E.1
Clarke, J.H.2
Hazelwood, G.P.3
Hoyland, R.W.4
McCarthy, A.J.5
Gilbert, H.J.6
-
30
-
-
0036231497
-
Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris
-
Sevo, M., G. Degrassi, N. Skoko, V. Venturi, and G. Ljubijankic, 2002. Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res. 1:271-277.
-
(2002)
FEMS Yeast Res.
, vol.1
, pp. 271-277
-
-
Sevo, M.1
Degrassi, G.2
Skoko, N.3
Venturi, V.4
Ljubijankicâ, G.5
-
31
-
-
0036304519
-
Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization
-
Shin, E. S., M. J. Yang, K. Hwa Jung, E. J. Kwon, J. S. Jung, S. K. Park, J. Kim, H. D. Yun, and H. Kim. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68:3496-3501.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 3496-3501
-
-
Shin, E.S.1
Yang, M.J.2
Hwa Jung, K.3
Kwon, E.J.4
Jung, J.S.5
Park, S.K.6
Kim, J.7
Yun, H.D.8
Kim, H.9
-
32
-
-
41449104758
-
Modulation of protein stability by O-glycosylation in a designed Gc-MAF analog
-
Spiriti, J., F. Bogani, A. van der Vaart, and G. Ghirlanda. 2008. Modulation of protein stability by O-glycosylation in a designed Gc-MAF analog. Biophys. Chem. 134:157-167.
-
(2008)
Biophys. Chem.
, vol.134
, pp. 157-167
-
-
Spiriti, J.1
Bogani, F.2
Van Der Vaart, A.3
Ghirlanda, G.4
-
33
-
-
0034653516
-
The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain
-
Sunna, A., M. D. Gibbs, and P. L. Bergquist. 2000. The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem. J. 346:583-586.
-
(2000)
Biochem. J.
, vol.346
, pp. 583-586
-
-
Sunna, A.1
Gibbs, M.D.2
Bergquist, P.L.3
-
34
-
-
0035370202
-
Combination of weakly stabilizing mutations with a disulfide-bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism
-
Turunen, O., K. Etuaho, F. Fenel, J. Vehmaanperä, X. Wu, J. Rouvinen, and M. Leisola. 2001. Combination of weakly stabilizing mutations with a disulfide-bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. J. Biotechnol. 88:37-46.
-
(2001)
J. Biotechnol.
, vol.88
, pp. 37-46
-
-
Turunen, O.1
Etuaho, K.2
Fenel, F.3
Vehmaanperä, J.4
Wu, X.5
Rouvinen, J.6
Leisola, M.7
-
35
-
-
76149144089
-
-
Reference deleted
-
Reference deleted.
-
-
-
-
36
-
-
33745273597
-
Probing the structural basis for the difference in thermostability displayed by family 10 xylanases
-
Xie, H., J. Flint, M. Vardakou, J. H. Lakey, R. J. Lewis, H. J. Gilbert, and C. Dumon. 2006. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases. J. Mol. Biol. 360:157-167.
-
(2006)
J. Mol. Biol.
, vol.360
, pp. 157-167
-
-
Xie, H.1
Flint, J.2
Vardakou, M.3
Lakey, J.H.4
Lewis, R.J.5
Gilbert, H.J.6
Dumon, C.7
-
37
-
-
2942612350
-
Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635
-
Xiong, H., A. Nyyssölä, J. Jänis, H. Santa, O. Pastinen, N. von Weymarn, M. Leisola, and O. Turunen. 2004. Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme Microb. Technol. 35:93-99.
-
(2004)
Enzyme Microb. Technol.
, vol.35
, pp. 93-99
-
-
Xiong, H.1
Nyyssölä, A.2
Jänis, J.3
Santa, H.4
Pastinen, O.5
Von Weymarn, N.6
Leisola, M.7
Turunen, O.8
|