메뉴 건너뛰기




Volumn 4, Issue 2, 2009, Pages 317-336

ABC likelihood-free methods for model choice in Gibbs random fields

Author keywords

Approximate bayesian computation; Bayes factor; Gibbs random fields; Model choice; Protein folding

Indexed keywords


EID: 75249099118     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/09-BA412     Document Type: Article
Times cited : (95)

References (23)
  • 1
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • 319, 320, 321
    • Beaumont, M., W. Zhang, and D. Balding. 2002. Approximate Bayesian computation in population genetics. Genetics 162:2025-2035. 319, 320, 321
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.1    Zhang, W.2    Balding, D.3
  • 2
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • 318, 323
    • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Royal Statist. Society, Series B 36:192-236. 318, 323
    • (1974) J. Royal Statist. Society, Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 3
    • 0000582521 scopus 로고
    • Statistical analysis of a non-lattice data
    • 318
    • Besag, J. 1975. Statistical analysis of a non-lattice data. The Statistician 24(3):179-195. 318
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 4
    • 84867138140 scopus 로고    scopus 로고
    • Highly tolerant likelihood-free Bayesian inference: An adaptative non-linear heteroscedastic model
    • (to appear). 320, 321
    • Blum, M. G. B. and O. François. 2008. Highly tolerant likelihood-free Bayesian inference: An adaptative non-linear heteroscedastic model. Statistics and Computing (to appear). 320, 321
    • (2008) Statistics and Computing
    • Blum, M.G.B.1    François, O.2
  • 5
    • 0001637134 scopus 로고
    • Markov fields and log-linear interaction model for contingency tables
    • 317
    • Darroch, J.N., S.L. Lauritzen, and T.P. Speed. 1980. Markov fields and log-linear interaction model for contingency tables. Annals of Statistics 8(3):522-539. 317
    • (1980) Annals of Statistics , vol.8 , Issue.3 , pp. 522-539
    • Darroch, J.N.1    Lauritzen, S.L.2    Speed, T.P.3
  • 6
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • 318
    • Gelman, A. and X. Meng. 1998. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statist. Science 13:163-185. 318
    • (1998) Statist. Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.2
  • 7
    • 0036970574 scopus 로고    scopus 로고
    • Hidden Markov models and disease mapping
    • 319
    • Green, P. and S. Richardson. 2002. Hidden Markov models and disease mapping. J. American Statist. Assoc. 92:1055-1070. 319
    • (2002) J. American Statist. Assoc. , vol.92 , pp. 1055-1070
    • Green, P.1    Richardson, S.2
  • 8
    • 4243449548 scopus 로고    scopus 로고
    • Finite Markov Chains and Algorithmic Applications
    • London Mathematical Society 323
    • Häggström, O. (2002). Finite Markov Chains and Algorithmic Applications, volume 52, Student Texts. London Mathematical Society. 323
    • (2002) Student Texts , vol.52
    • Häggström, O.1
  • 9
    • 0041339533 scopus 로고    scopus 로고
    • Parametric estimation in Markov random fields image modeling with imperfect observations. A comparative study
    • 319
    • Ibanez, M. and A. Simo. 2003. Parametric estimation in Markov random fields image modeling with imperfect observations. A comparative study. Pattern Recognition Letters 24:2377-2389. 319
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2377-2389
    • Ibanez, M.1    Simo, A.2
  • 10
    • 18744411506 scopus 로고    scopus 로고
    • FROST: a filterbased fold recognition method
    • 330
    • Marin, A., J. Pothier, K. Zimmermann, and J. Gibrat. 2002. FROST: a filterbased fold recognition method. Proteins 49:493-509. 330
    • (2002) Proteins , vol.49 , pp. 493-509
    • Marin, A.1    Pothier, J.2    Zimmermann, K.3    Gibrat, J.4
  • 12
    • 26444452027 scopus 로고    scopus 로고
    • Protein secondary structure assignment revisited: a detailed analysis of different assignment methods
    • 330
    • Martin, J., G. Letellier, A. Marin, J.-F. Taly, A. de Brevern, and J.-F. Gibrat. 2005. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct. Biol. 5:17. 330
    • (2005) BMC Struct. Biol. , vol.5 , pp. 17
    • Martin, J.1    Letellier, G.2    Marin, A.3    Taly, J.-F.4    de Brevern, A.5    Gibrat, J.-F.6
  • 14
    • 33745612435 scopus 로고    scopus 로고
    • An effcient MCMC algorithm method for distributions with intractable normalising constant
    • 318
    • Møller, J., A. Pettitt, R. Reeves, and K. Berthelsen. 2006. An effcient MCMC algorithm method for distributions with intractable normalising constant. Biometrika 93:451-458. 318
    • (2006) Biometrika , vol.93 , pp. 451-458
    • Møller, J.1    Pettitt, A.2    Reeves, R.3    Berthelsen, K.4
  • 16
    • 0032735986 scopus 로고    scopus 로고
    • Popu-lation growth of human Y chromosomes: a study of Y chromosome microsatellites
    • 319
    • Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. 1999. Popu-lation growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16: 1791-1798. 319
    • (1999) Mol. Biol. Evol. , vol.16 , pp. 1791-1798
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezaun, A.3    Feldman, M.W.4
  • 19
    • 0027136282 scopus 로고
    • Comparative protein modelling by satisfaction of spatial restraints
    • 330
    • Sali, A. and T. Blundell. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779-815. 330
    • (1993) J. Mol. Biol. , vol.234 , pp. 779-815
    • Sali, A.1    Blundell, T.2
  • 20
    • 39449089086 scopus 로고    scopus 로고
    • Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    • 331
    • Taly, J., A. Marin, and J. Gibrat. 2008. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models? BMC Bioinformatics 9:6. 331
    • (2008) BMC Bioinformatics , vol.9 , pp. 6
    • Taly, J.1    Marin, A.2    Gibrat, J.3
  • 21
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynam-ical systems
    • Toni, T., D. Welch, N. Strelkowa, A. Ipsen and M.P. Stumpf. 2008. Approximate Bayesian computation scheme for parameter inference and model selection in dynam-ical systems. J. Royal Society Interface 6:187-202.
    • (2008) J. Royal Society Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.5
  • 23
    • 10344232638 scopus 로고    scopus 로고
    • Scoring function for automated assessment of protein structure template quality
    • 331
    • Zhang, Y. and J. Skolnick. 2004. Scoring function for automated assessment of protein structure template quality. Proteins 57:702-710. 331
    • (2004) Proteins , vol.57 , pp. 702-710
    • Zhang, Y.1    Skolnick, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.