메뉴 건너뛰기




Volumn , Issue , 2009, Pages 767-775

Semi-nonnegative matrix factorization with global statistical consistency for collaborative filtering

Author keywords

Collaborative filtering; Matrix factorization; Optimization; Recommender systems

Indexed keywords

COLLABORATIVE FILTERING; DATA SETS; EXPERIMENTAL ANALYSIS; FACTOR MODEL; INDUSTRIAL COMMUNITIES; INFORMATION FILTERING; LARGE DATASETS; MATRIX; MATRIX FACTORIZATION; MATRIX FACTORIZATIONS; MODEL COMPLEXITY; NONNEGATIVE MATRIX FACTORIZATION; NOVEL METHODS; OPTIMIZATION ALGORITHMS; RECOMMENDATION ALGORITHMS; RECOMMENDER SYSTEMS; STATE-OF-THE-ART METHODS;

EID: 74549215696     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646051     Document Type: Conference Paper
Times cited : (6)

References (37)
  • 1
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommendation. Commun. ACM, 40(3):66-72, 1997.
    • (1997) Commun. ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanović, M.1    Shoham, Y.2
  • 9
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89-115, 2004.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 10
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 22(1):116-142, 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 12
    • 0013271231 scopus 로고    scopus 로고
    • Clustering for collaborative filtering applications
    • A. Kohrs and B. Merialdo. Clustering for collaborative filtering applications. In Proceedings of CIMCA, 1999.
    • (1999) Proceedings of CIMCA
    • Kohrs, A.1    Merialdo, B.2
  • 14
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • Jan/Feb
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, pages 76-80, Jan/Feb 2003.
    • (2003) IEEE Internet Computing , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 19
    • 84898970398 scopus 로고    scopus 로고
    • Modeling user rating profiles for collaborative filtering
    • S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
    • B. Marlin. Modeling user rating profiles for collaborative filtering. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Marlin, B.1
  • 20
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification ofinteresting web sites
    • M. Pazzani and D. Billsus. Learning and revising user profiles: The identification ofinteresting web sites. Mach. Learn., 27(3):313-331, 1997.
    • (1997) Mach. Learn , vol.27 , Issue.3 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2
  • 24
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1257-1264. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 1257-1264
    • Salakhutdinov, R.1    Mnih, A.2
  • 30
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • T. Fawcett and N. Mishra, editors, AAAI Press
    • N. Srebro and T. Jaakkola. Weighted low-rank approximations. In T. Fawcett and N. Mishra, editors, ICML, pages 720-727. AAAI Press, 2003.
    • (2003) ICML , pp. 720-727
    • Srebro, N.1    Jaakkola, T.2
  • 34
    • 33745478821 scopus 로고    scopus 로고
    • Learning from incomplete ratings using non-negative matrix factorization
    • J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Srivastava, editors, SIAM
    • S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning from incomplete ratings using non-negative matrix factorization. In J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Srivastava, editors, SDM. SIAM, 2006.
    • (2006) SDM
    • Zhang, S.1    Wang, W.2    Ford, J.3    Makedon, F.4
  • 37
    • 85162059520 scopus 로고    scopus 로고
    • Predictive matrix-variate t models
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • S. Zhu, K. Yu, and Y. Gong. Predictive matrix-variate t models. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 1721-1728
    • Zhu, S.1    Yu, K.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.