-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando, T. Zhang, and P. Bartlett. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
Bartlett, P.3
-
3
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from examples
-
M. Belkin, P. Niyogi, V. Sindhwani, and P. Bartlett. Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
Bartlett, P.4
-
4
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Cambridge, MA, MIT Press
-
S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation. In Advances in Neural Information Processing Systems 20, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems 20
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
11
-
-
33746536145
-
Adaptation of maximum entropy capitalizer: Little data can help a lot
-
C. Chelba and A. Acero. Adaptation of maximum entropy capitalizer: Little data can help a lot. Computer Speech and Language, 20(4):382-399, 2006.
-
(2006)
Computer Speech and Language
, vol.20
, Issue.4
, pp. 382-399
-
-
Chelba, C.1
Acero, A.2
-
13
-
-
38349114038
-
Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor
-
J.-L. Faulon, M. Misra, S. Martin, K. Sale, and R. Sapra. Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics, 24(2):225-233, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.2
, pp. 225-233
-
-
Faulon, J.-L.1
Misra, M.2
Martin, S.3
Sale, K.4
Sapra, R.5
-
16
-
-
74549224227
-
-
M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, December 2008. Web page and software available at http://stanford.edu/~boyd/cvx.
-
M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, December 2008. Web page and software available at http://stanford.edu/~boyd/cvx.
-
-
-
-
18
-
-
84864063983
-
A kernel method for the two-sample-problem
-
MIT Press
-
A. Gretton, K. M. Borgwardt, M. Rasch, B. Scholkopf, and A. J. Smola. A kernel method for the two-sample-problem. In Advances in NIPS 19. MIT Press, 2007.
-
(2007)
Advances in NIPS 19
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Scholkopf, B.4
Smola, A.J.5
-
19
-
-
56449086680
-
A Dual Coordinate Descent Method for Large-scale Linear SVM
-
C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan. A Dual Coordinate Descent Method for Large-scale Linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML), 2008.
-
(2008)
Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)
-
-
Hsieh, C.1
Chang, K.2
Lin, C.3
Keerthi, S.4
Sundararajan, S.5
-
21
-
-
85151274557
-
Correcting sample selection bias by unlabeled data
-
J. Huang, A. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf. Correcting sample selection bias by unlabeled data. In Proceedings of Twentieth Annual Conference on Neural Information Processing Systems, 2006.
-
(2006)
Proceedings of Twentieth Annual Conference on Neural Information Processing Systems
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
22
-
-
74549205645
-
Virtual screening of gpcrs: An in silico chemogenomics approach
-
Technical Report HAL-00220396, French Center for Computational Biology
-
L. Jacob, B. Hoffmann, V. Stoven, and J.-P. Vert. Virtual screening of gpcrs: an in silico chemogenomics approach. Technical Report HAL-00220396, French Center for Computational Biology, 2008.
-
(2008)
-
-
Jacob, L.1
Hoffmann, B.2
Stoven, V.3
Vert, J.-P.4
-
23
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
I. Bratko and S. Dzeroski, editors, Morgan Kaufmann Publishers
-
T. Joachims. Transductive inference for text classification using support vector machines. In I. Bratko and S. Dzeroski, editors, Proceedings of ICML-99, 16th International Conference on Machine Learning, pages 200-209. Morgan Kaufmann Publishers, 1999.
-
(1999)
Proceedings of ICML-99, 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
26
-
-
65449158108
-
Spectral domain-transfer learning
-
ACM New York, NY, USA
-
X. Ling, W. Dai, G. Xue, Q. Yang, and Y. Yu. Spectral domain-transfer learning. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM New York, NY, USA, 2008.
-
(2008)
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
-
-
Ling, X.1
Dai, W.2
Xue, G.3
Yang, Q.4
Yu, Y.5
-
27
-
-
33644875256
-
GLIDA: GPCR-ligand database for chemical genomic drug discovery
-
Y. Okuno, J. Yang, K. Taneishi, H. Yabuuchi, and G. Tsujimoto. GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res., 2006(9).
-
(2006)
Nucleic Acids Res
, Issue.9
-
-
Okuno, Y.1
Yang, J.2
Taneishi, K.3
Yabuuchi, H.4
Tsujimoto, G.5
-
30
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
New York, NY, USA
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In Proceedings of the 24th international conference on Machine learning, pages 759-766, New York, NY, USA, 2007.
-
(2007)
Proceedings of the 24th international conference on Machine learning
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
33
-
-
0037527188
-
Improving predictive inference under convariance shift by weighting the log-likelihood function
-
H. Shimodaira. Improving predictive inference under convariance shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90(18):227-244, 2000.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, Issue.18
, pp. 227-244
-
-
Shimodaira, H.1
-
35
-
-
52649148544
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In NIPS, 2007.
-
(2007)
NIPS
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Buenau, P.V.4
Kawanabe, M.5
-
37
-
-
36849056635
-
Co-clustering based classification for out-of-domain documents
-
San Jose, California, USA, August, ACM
-
Q. Y. Wenyuan Dai, Gui-Rong Xue and Y. Yu. Co-clustering based classification for out-of-domain documents. In Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 210-219, San Jose, California, USA, August 2007. ACM.
-
(2007)
Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 210-219
-
-
Wenyuan Dai, Q.Y.1
Xue, G.-R.2
Yu, Y.3
-
38
-
-
35348869458
-
Robust truncated hinge loss support vector machines
-
Y. Wu and Y. Liu. Robust truncated hinge loss support vector machines. Journal of the American Statistical Association, 102(479):974-983, 2007.
-
(2007)
Journal of the American Statistical Association
, vol.102
, Issue.479
, pp. 974-983
-
-
Wu, Y.1
Liu, Y.2
-
39
-
-
74549187416
-
The matrix stick-breaking process for flexible multi-task learning
-
Y. Xue, D. Dunson, and L. Carin. The matrix stick-breaking process for flexible multi-task learning. In ICML, 2007.
-
(2007)
ICML
-
-
Xue, Y.1
Dunson, D.2
Carin, L.3
-
40
-
-
33745456231
-
Semi-supervised learning literature survey
-
Technical report, Department of Computer Science, University of Wisconsin, Madison
-
X. Zhu. Semi-supervised learning literature survey. Technical report, Department of Computer Science, University of Wisconsin, Madison, 2008.
-
(2008)
-
-
Zhu, X.1
-
41
-
-
33947356178
-
Editorial: Special issue on mining low-quality data
-
X. Zhu, T. M. Khoshgoftaar, I. Davidson, and S. Zhang. Editorial: Special issue on mining low-quality data. Knowledge and Information Systems, 11:131-6, 2007.
-
(2007)
Knowledge and Information Systems
, vol.11
, pp. 131-136
-
-
Zhu, X.1
Khoshgoftaar, T.M.2
Davidson, I.3
Zhang, S.4
|