메뉴 건너뛰기




Volumn 101, Issue 6, 2010, Pages 1820-1825

Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135

Author keywords

Biofuels; Hydrogen yield; Metabolic engineering; Response surface methodology (RSM)

Indexed keywords

BIOFUELS; DESIGN OF EXPERIMENTS; ESCHERICHIA COLI; GLUCOSE; METABOLIC ENGINEERING; STRAIN; SURFACE PROPERTIES;

EID: 74549124869     PISSN: 09608524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biortech.2009.10.020     Document Type: Article
Times cited : (63)

References (33)
  • 1
    • 63649098478 scopus 로고    scopus 로고
    • Construction of a synthetic YdbK-dependent pyruvate: H2 pathway in Escherichia coli BL21(DE3)
    • Akhtar, M.K., Jones, P.R., 2009. Construction of a synthetic YdbK-dependent pyruvate: H2 pathway in Escherichia coli BL21(DE3). Metabol. Eng. 11, 139-147.
    • (2009) Metabol. Eng. , vol.11 , pp. 139-147
    • Akhtar, M.K.1    Jones, P.R.2
  • 2
    • 0032705832 scopus 로고    scopus 로고
    • Box-Behnken design in the development of optimized complex medium of phenol degradation using Pseudomonas putida (NICM 2174)
    • Annadurai, G., Balan, S.M., Murugesan, T., 1999. Box-Behnken design in the development of optimized complex medium of phenol degradation using Pseudomonas putida (NICM 2174). Bioprocess Eng. 21, 415-421.
    • (1999) Bioprocess Eng , vol.21 , pp. 415-421
    • Annadurai, G.1    Balan, S.M.2    Murugesan, T.3
  • 4
    • 33747093365 scopus 로고    scopus 로고
    • The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli
    • Bisaillon, A., Turcot, J., Hallenbeck, P.C., 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energy 31, 1504-1508.
    • (2006) Int. J. Hydrogen Energy , vol.31 , pp. 1504-1508
    • Bisaillon, A.1    Turcot, J.2    Hallenbeck, P.C.3
  • 5
    • 84946657020 scopus 로고
    • Three level design for the study of quantitative variables
    • Box, G.E.P., Behnken, D.W., 1960. Three level design for the study of quantitative variables. Technometrics 2, 455-475.
    • (1960) Technometrics , vol.2 , pp. 455-475
    • Box, G.E.P.1    Behnken, D.W.2
  • 7
    • 0036466566 scopus 로고    scopus 로고
    • Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes
    • Fabriano, B., Perego, P., 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy 27, 149-156.
    • (2002) Int. J. Hydrogen Energy , vol.27 , pp. 149-156
    • Fabriano, B.1    Perego, P.2
  • 8
    • 70349213229 scopus 로고    scopus 로고
    • Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135
    • Ghosh, D., Hallenbeck, P.C., 2009. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. Int. J. Hydrogen Energy 34, 7979-7982.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 7979-7982
    • Ghosh, D.1    Hallenbeck, P.C.2
  • 9
    • 25444468375 scopus 로고    scopus 로고
    • Fundamentals of the fermentative production of hydrogen
    • Hallenbeck, P.C., 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52, 21-29.
    • (2005) Water Sci. Technol. , vol.52 , pp. 21-29
    • Hallenbeck, P.C.1
  • 10
    • 67650740864 scopus 로고    scopus 로고
    • Fermentative hydrogen production: principles, progress, and prognosis
    • Hallenbeck, P.C., 2009. Fermentative hydrogen production: principles, progress, and prognosis. Int. J. Hydrogen Energy 34, 7379-7389.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 7379-7389
    • Hallenbeck, P.C.1
  • 11
    • 0036827191 scopus 로고    scopus 로고
    • Biological hydrogen production; fundamentals and limiting processes
    • Hallenbeck, P.C., Benemann, J.R., 2002. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 27, 1185-1193.
    • (2002) Int. J. Hydrogen Energy , vol.27 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 12
    • 64749085304 scopus 로고    scopus 로고
    • Fermentative hydrogen production: the way forward?
    • Hallenbeck, P.C., Ghosh, D., 2009. Fermentative hydrogen production: the way forward? Trends Biotechnol. 27, 287-297.
    • (2009) Trends Biotechnol. , vol.27 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 14
    • 33845456748 scopus 로고    scopus 로고
    • Application of factorial and response surface methodology in modern experimental design and optimization
    • Hanrahan, G., Lu, K., 2006. Application of factorial and response surface methodology in modern experimental design and optimization. Crit. Rev. Analyt. Chem. 36, 41-151.
    • (2006) Crit. Rev. Analyt. Chem. , vol.36 , pp. 41-151
    • Hanrahan, G.1    Lu, K.2
  • 15
    • 33846192340 scopus 로고    scopus 로고
    • Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress
    • Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32, 172-184.
    • (2007) Int. J. Hydrogen Energy , vol.32 , pp. 172-184
    • Hawkes, F.R.1    Hussy, I.2    Kyazze, G.3    Dinsdale, R.4    Hawkes, D.L.5
  • 16
    • 37549026106 scopus 로고    scopus 로고
    • Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods
    • Jo, J.H., Lee, D.S., Park, D., Choe, W., Park, J.M., 2008. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresource Technol. 99, 2061-2066.
    • (2008) Bioresource Technol , vol.99 , pp. 2061-2066
    • Jo, J.H.1    Lee, D.S.2    Park, D.3    Choe, W.4    Park, J.M.5
  • 17
    • 30944443553 scopus 로고    scopus 로고
    • Bio-hydrogen production from waste materials
    • Kapdan, I.K., Kargi, F., 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569-582.
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 18
    • 0034607692 scopus 로고    scopus 로고
    • Modeling and optimization of anaerobic digested sludge converting starch to hydrogen
    • Lay, J.J., 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68, 269-278.
    • (2000) Biotechnol. Bioeng. , vol.68 , pp. 269-278
    • Lay, J.J.1
  • 19
    • 33845542715 scopus 로고    scopus 로고
    • Statistical experimental design for bioprocess modeling and optimization analysis
    • Lee, K.-M., Gilmore, D.F., 2006. Statistical experimental design for bioprocess modeling and optimization analysis. Appl. Biochem. Biotechnol. 135, 101-115.
    • (2006) Appl. Biochem. Biotechnol. , vol.135 , pp. 101-115
    • Lee, K.-M.1    Gilmore, D.F.2
  • 21
    • 36348955587 scopus 로고    scopus 로고
    • Enhanced hydrogen production from glucose by a metabolically-engineered Escherichia coli
    • Maeda, T., Sanchez-Torres, V., Wood, T.K., 2007. Enhanced hydrogen production from glucose by a metabolically-engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 879-890.
    • (2007) Appl. Microbiol. Biotechnol. , vol.77 , pp. 879-890
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 22
    • 33747333106 scopus 로고
    • Use of dinitrosalicylic acid reagent for determination of reducing sugar
    • Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-429.
    • (1959) Anal. Chem. , vol.31 , pp. 426-429
    • Miller, G.L.1
  • 24
    • 33645236873 scopus 로고    scopus 로고
    • Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures
    • Mu, Y., Wang, G., Yu, H.Q., 2006. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb. Technol. 38, 905-913.
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 905-913
    • Mu, Y.1    Wang, G.2    Yu, H.Q.3
  • 25
    • 0031917522 scopus 로고    scopus 로고
    • Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor
    • Rachman, M.A., Nakashimada, Y., Kakizono, T., Nishio, N., 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49, 450-454.
    • (1998) Appl. Microbiol. Biotechnol. , vol.49 , pp. 450-454
    • Rachman, M.A.1    Nakashimada, Y.2    Kakizono, T.3    Nishio, N.4
  • 26
    • 40849141029 scopus 로고    scopus 로고
    • Hydrogen production by continuous cultures of Escherchia coli under different nutrient regimes
    • Turcot, J., Bisaillon, A., Hallenbeck, P.C., 2008. Hydrogen production by continuous cultures of Escherchia coli under different nutrient regimes. Int. J. Hydrogen Energy 33, 1465-1470.
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 1465-1470
    • Turcot, J.1    Bisaillon, A.2    Hallenbeck, P.C.3
  • 27
    • 74549136876 scopus 로고    scopus 로고
    • Biohydrogen production as a function of pH and substrate concentration
    • Van Ginkel, S., Sung, S., Lay, J.J., 2001. Biohydrogen production as a function of pH and substrate concentration. Int. J Hydrogen Energy 23, 559-563.
    • (2001) Int. J Hydrogen Energy , vol.23 , pp. 559-563
    • Van Ginkel, S.1    Sung, S.2    Lay, J.J.3
  • 28
    • 33746866283 scopus 로고    scopus 로고
    • Increasing biohydrogen production by metabolic engineering
    • Vignais, P.M., Magnin, J.-P., Willison, J.C., 2006. Increasing biohydrogen production by metabolic engineering. Int. J. Hydrogen Energy 31, 1478-1483.
    • (2006) Int. J. Hydrogen Energy , vol.31 , pp. 1478-1483
    • Vignais, P.M.1    Magnin, J.-P.2    Willison, J.C.3
  • 29
    • 56749183627 scopus 로고    scopus 로고
    • Optimization of fermentative hydrogen production process by response surface methodology
    • Wang, J., Wan, W., 2008. Optimization of fermentative hydrogen production process by response surface methodology. Int. J Hydrogen Energy 33, 6976-6984.
    • (2008) Int. J Hydrogen Energy , vol.33 , pp. 6976-6984
    • Wang, J.1    Wan, W.2
  • 30
    • 57949088469 scopus 로고    scopus 로고
    • Experimental design methods for fermentative hydrogen production: a review
    • Wang, J., Wan, W., 2009. Experimental design methods for fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 235-244.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 235-244
    • Wang, J.1    Wan, W.2
  • 31
    • 13244272137 scopus 로고    scopus 로고
    • Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucroserich wastewater
    • Wang, G., Mu, Y., Yu, H.Q., 2005. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucroserich wastewater. Biochem. Eng. J. 23, 175-184.
    • (2005) Biochem. Eng. J. , vol.23 , pp. 175-184
    • Wang, G.1    Mu, Y.2    Yu, H.Q.3
  • 32
    • 0041177672 scopus 로고    scopus 로고
    • A note on the robustness of Box-Behnken designs to the unavailability of data
    • Whittinghill, D.C., 1998. A note on the robustness of Box-Behnken designs to the unavailability of data. Matrika 48, 49-52.
    • (1998) Matrika , vol.48 , pp. 49-52
    • Whittinghill, D.C.1
  • 33
    • 33750328012 scopus 로고    scopus 로고
    • Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains
    • Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., Yukawa, H., 2006. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 73, 67-72.
    • (2006) Appl. Microbiol. Biotechnol. , vol.73 , pp. 67-72
    • Yoshida, A.1    Nishimura, T.2    Kawaguchi, H.3    Inui, M.4    Yukawa, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.