메뉴 건너뛰기




Volumn 7, Issue 1, 2010, Pages 143-146

Process parameters optimization: A design study for TiO2 thin film of vacuum sputtering process

Author keywords

Genetic algorithm (GA); Neural network; Taguchi method; Thin film; Vacuum sputtering process

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DESIGN STUDIES; DIFFERENT PROCESS; EXPERIMENTAL DATA; EXPERIMENTAL DESIGN METHOD; MODELING AND OPTIMIZATION; OPTIMAL PROCESS; PROCESS PARAMETERS; QUALITY PERFORMANCE; SYSTEM MODELS; TAGUCHI EXPERIMENTAL METHOD; TIO; VACUUM SPUTTERING PROCESS; WATER CONTACT ANGLE;

EID: 73849099116     PISSN: 15455955     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASE.2009.2023673     Document Type: Article
Times cited : (34)

References (20)
  • 1
    • 33746441144 scopus 로고    scopus 로고
    • Modeling, scheduling, and performance evaluation for wafer fabrication: A queueing colored Petri-net and GA-based approach
    • Jul.
    • T. C. Chiang, A. C. Huang, and L. C. Fu, "Modeling, scheduling, and performance evaluation for wafer fabrication: A queueing colored Petri-net and GA-based approach," IEEE Trans. Autom. Sci. Eng., vol. 3, pp. 330-338, Jul. 2006.
    • (2006) IEEE Trans. Autom. Sci. Eng. , vol.3 , pp. 330-338
    • Chiang, T.C.1    Huang, A.C.2    Fu, L.C.3
  • 2
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Jan.
    • S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," IEEE Trans. Neural Networks, vol. 16, pp. 24-38, Jan. 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 5
    • 38149033827 scopus 로고    scopus 로고
    • A neural network degradation model for computing and updating residual life distributions
    • Jan.
    • N. Z. Gebraeel and M. A. Lawley, "A neural network degradation model for computing and updating residual life distributions," IEEE Trans. Autom. Sci. Eng., vol. 5, pp. 154-163, Jan. 2008.
    • (2008) IEEE Trans. Autom. Sci. Eng. , vol.5 , pp. 154-163
    • Gebraeel, N.Z.1    Lawley, M.A.2
  • 7
    • 54949084294 scopus 로고    scopus 로고
    • Nonlinear systems identification using dynamic multi-time scales neural networks
    • Washington, DC
    • X. Han and W. F. Xie, "Nonlinear systems identification using dynamic multi-time scales neural networks," in Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE 2008), Washington, DC, 2008, pp. 448-453.
    • (2008) Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE 2008) , pp. 448-453
    • Han, X.1    Xie, W.F.2
  • 8
    • 46849121408 scopus 로고    scopus 로고
    • Fault detection, isolation, and accommodation control in robotic systems
    • Jul.
    • S. N. Huang and K. K. Tan, "Fault detection, isolation, and accommodation control in robotic systems," IEEE Trans. Autom. Sci. Eng., vol. 5, pp. 480-489, Jul. 2008.
    • (2008) IEEE Trans. Autom. Sci. Eng. , vol.5 , pp. 480-489
    • Huang, S.N.1    Tan, K.K.2
  • 9
    • 2542618358 scopus 로고    scopus 로고
    • Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks
    • May
    • P. Y. Liu and H. X. Li, "Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks," IEEE Trans. Neural Networks, vol. 15, pp. 545-558, May 2004.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 545-558
    • Liu, P.Y.1    Li, H.X.2
  • 18
    • 4444296251 scopus 로고    scopus 로고
    • Hybrid Taguchi-genetic algorithm for global numerical optimization
    • Aug.
    • J. T. Tsai, T. K. Liu, and J. H. Chou, "Hybrid Taguchi-genetic algorithm for global numerical optimization," IEEE Trans. Evol. Comput., vol. 8, no. 4, pp. 365-377, Aug. 2004.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.4 , pp. 365-377
    • Tsai, J.T.1    Liu, T.K.2    Chou, J.H.3
  • 19
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • Jan.
    • J. T. Tsai, J. H. Chou, and T. K. Liu, "Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm," IEEE Trans. Neural Networks, vol. 17, pp. 69-80, Jan. 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 69-80
    • Tsai, J.T.1    Chou, J.H.2    Liu, T.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.