메뉴 건너뛰기




Volumn 15, Issue 3, 2004, Pages 545-558

Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks

Author keywords

function; Back propagation (BP) algorithm; Fuzzy BP algorithm; Fuzzy conjugate gradient algorithm; Regular fuzzy neural network

Indexed keywords

BACKPROPAGATION; COMPUTER SIMULATION; FUZZY SETS; INFERENCE ENGINES; LEARNING ALGORITHMS; MEMBERSHIP FUNCTIONS; OPTIMIZATION;

EID: 2542618358     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2004.824250     Document Type: Article
Times cited : (62)

References (34)
  • 1
    • 0041678715 scopus 로고    scopus 로고
    • Genetic algorithm-based learning of fuzzy neural networks. Part I: Feed-forward fuzzy neural networks
    • R. A. Aliev, B. Fazlollahi, and R. M. Vahidov, "Genetic algorithm-based learning of fuzzy neural networks. Part I: Feed-forward fuzzy neural networks," Fuzzy Sets Syst., vol. 118, 3, pp. 351-358, 2001.
    • (2001) Fuzzy Sets Syst. , vol.118 , Issue.3 , pp. 351-358
    • Aliev, R.A.1    Fazlollahi, B.2    Vahidov, R.M.3
  • 2
    • 0012076955 scopus 로고
    • Can fuzzy neural nets approximate continuous fuzzy functions
    • J. J. Buckley and Y. Hayashi, "Can fuzzy neural nets approximate continuous fuzzy functions," Fuzzy Sets Syst., vol. 61, no. 1, pp. 43-51, 1994.
    • (1994) Fuzzy Sets Syst. , vol.61 , Issue.1 , pp. 43-51
    • Buckley, J.J.1    Hayashi, Y.2
  • 4
    • 0033366312 scopus 로고    scopus 로고
    • Function approximation from noise data by an incremental RBF network
    • M. Carozza and S. Rampone, "Function approximation from noise data by an incremental RBF network," Pattern Recogn., vol. 32, no. 12, pp. 2081-2083, 1999.
    • (1999) Pattern Recogn. , vol.32 , Issue.12 , pp. 2081-2083
    • Carozza, M.1    Rampone, S.2
  • 5
    • 0036195628 scopus 로고    scopus 로고
    • A neuro-fuzzy framework for inference
    • S. Chakraborty, K. Pal, and N. R. Pal, "A neuro-fuzzy framework for inference," Neural Networks, vol. 15, pp. 247-261, 2002.
    • (2002) Neural Networks , vol.15 , pp. 247-261
    • Chakraborty, S.1    Pal, K.2    Pal, N.R.3
  • 6
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • C. Charalambous, "Conjugate gradient algorithm for efficient training of artificial neural networks," Proc. Inst. Elect. Eng. G, vol. 139, no. 2, pp. 301-310, 1992.
    • (1992) Proc. Inst. Elect. Eng. G , vol.139 , Issue.2 , pp. 301-310
    • Charalambous, C.1
  • 7
    • 0028428006 scopus 로고    scopus 로고
    • A robust back propagation learning algorithm for function approximation
    • Mar.
    • D. S. Chen and R. C. Jain, "A robust back propagation learning algorithm for function approximation," IEEE Trans. Neural Networks, vol. 7, pp. 467-479, Mar. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 9
    • 0031373130 scopus 로고    scopus 로고
    • Training fuzzy number neural networks with alpha-cut refinements
    • J. Dunyak and D. Wunsch, "Training fuzzy number neural networks with alpha-cut refinements," in Proc. IEEE Int. Conf. Systems, Man, Cybernetics, vol. 1, 1997, pp. 189-194.
    • (1997) Proc. IEEE Int. Conf. Systems, Man, Cybernetics , vol.1 , pp. 189-194
    • Dunyak, J.1    Wunsch, D.2
  • 10
    • 0033361980 scopus 로고    scopus 로고
    • Fuzzy number neural networks
    • ____, "Fuzzy number neural networks," Fuzzy Sets Syst., vol. 108, no. 1, pp. 49-58, 1999.
    • (1999) Fuzzy Sets Syst. , vol.108 , Issue.1 , pp. 49-58
    • Dunyak, J.1    Wunsch, D.2
  • 12
    • 0013387856 scopus 로고    scopus 로고
    • The fuzzy neural network approximation lemma
    • T. Feuring and W. M. Lippe, "The fuzzy neural network approximation lemma," Fuzzy Sets Syst., vol. 102, no. 2, pp. 227-237, 1999.
    • (1999) Fuzzy Sets Syst. , vol.102 , Issue.2 , pp. 227-237
    • Feuring, T.1    Lippe, W.M.2
  • 15
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the bach-propagation algorithm
    • Sept.
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On fuzzy modeling using fuzzy neural networks with the bach-propagation algorithm," IEEE Trans. Neural Networks, vol. 3, pp. 801-806, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 16
    • 0027595614 scopus 로고
    • Neural networks that learn from fuzzy if-then rules
    • Feb.
    • H. Ishibuchi, R. Fujioka, and H. Tanaka, "Neural networks that learn from fuzzy if-then rules," IEEE Trans. Fuzzy Syst., vol. 1, pp. 85-97, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 85-97
    • Ishibuchi, H.1    Fujioka, R.2    Tanaka, H.3
  • 17
    • 0029297402 scopus 로고
    • Learning algorithm of fuzzy neural networks with triangular fuzzy weights
    • H. Ishibuchi, K. Kwon, and H. A. Tanaka, "Learning algorithm of fuzzy neural networks with triangular fuzzy weights," Fuzzy Sets Syst., vol. 71, no. 2, pp. 277-293, 1995.
    • (1995) Fuzzy Sets Syst. , vol.71 , Issue.2 , pp. 277-293
    • Ishibuchi, H.1    Kwon, K.2    Tanaka, H.A.3
  • 19
    • 0035897963 scopus 로고    scopus 로고
    • Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules
    • H. Ishibuchi and M. Nii, "Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules," Fuzzy Sets Syst., vol. 120, no. 2, pp. 281-307, 2001.
    • (2001) Fuzzy Sets Syst. , vol.120 , Issue.2 , pp. 281-307
    • Ishibuchi, H.1    Nii, M.2
  • 20
    • 2542540236 scopus 로고
    • Learning of fuzzy neural networks from fuzzy inputs and fuzzy targets
    • H. Ishibuchi, K. Kwon, and H. Tanaka, "Learning of fuzzy neural networks from fuzzy inputs and fuzzy targets," in Proc. 5th IFSA World Congr., vol. 1, 1993, pp. 147-150.
    • (1993) Proc. 5th IFSA World Congr. , vol.1 , pp. 147-150
    • Ishibuchi, H.1    Kwon, K.2    Tanaka, H.3
  • 21
    • 0033281255 scopus 로고    scopus 로고
    • Approximate realization of fuzzy mappings by regression models, neural networks and rule-based systems
    • H. Ishibuchi, M. Nii, and C.-H. Oh, "Approximate realization of fuzzy mappings by regression models, neural networks and rule-based systems," in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 2, 1999, pp. 939-944.
    • (1999) Proc. IEEE Int. Conf. Fuzzy Syst. , vol.2 , pp. 939-944
    • Ishibuchi, H.1    Nii, M.2    Oh, C.-H.3
  • 22
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-684, 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-684
    • Jang, J.-S.R.1
  • 23
    • 0028750367 scopus 로고
    • Genetic learning algorithms for fuzzy neural nets
    • P. V. Krishnamraju et al., "Genetic learning algorithms for fuzzy neural nets," in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, 1994, pp. 1969-1974.
    • (1994) Proc. IEEE Int. Conf. Fuzzy Systems , vol.2 , pp. 1969-1974
    • Krishnamraju, P.V.1
  • 24
    • 0038439083 scopus 로고    scopus 로고
    • On the approximation realization of fuzzy closure mapping by multilayer regular fuzzy neural network
    • P. Liu, "On the approximation realization of fuzzy closure mapping by multilayer regular fuzzy neural network," Multiple Valued Logic, vol. 5, no. 2, pp. 463-480, 2000.
    • (2000) Multiple Valued Logic , vol.5 , Issue.2 , pp. 463-480
    • Liu, P.1
  • 25
    • 0008718625 scopus 로고    scopus 로고
    • Analyzes of regular fuzzy neural networks for approximation capability
    • ____, "Analyzes of regular fuzzy neural networks for approximation capability," Fuzzy Sets Syst., vol. 114, no. 3, pp. 329-338, 2000.
    • (2000) Fuzzy Sets Syst. , vol.114 , Issue.3 , pp. 329-338
    • Liu, P.1
  • 26
    • 0035313691 scopus 로고    scopus 로고
    • Universal approximations of continuous fuzzy valued functions by multi-layer regular fuzzy neural networks
    • ____, "Universal approximations of continuous fuzzy valued functions by multi-layer regular fuzzy neural networks," Fuzzy Sets Syst., vol. 119, no. 2, pp. 313-320, 2001.
    • (2001) Fuzzy Sets Syst. , vol.119 , Issue.2 , pp. 313-320
    • Liu, P.1
  • 27
    • 0038100027 scopus 로고    scopus 로고
    • Research on approximation capability of regular fuzzy neural network to continuous fuzzy function
    • P. Liu and H. Wang, "Research on approximation capability of regular fuzzy neural network to continuous fuzzy function," Sci. China, E, vol. 41, no. 2, pp. 143-151, 1999.
    • (1999) Sci. China, E , vol.41 , Issue.2 , pp. 143-151
    • Liu, P.1    Wang, H.2
  • 28
    • 0033281209 scopus 로고    scopus 로고
    • Type-2 fuzzy logic systems
    • K. Mendel and Q. Liang, "Type-2 fuzzy logic systems," IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 788-800, 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.6 , pp. 788-800
    • Mendel, K.1    Liang, Q.2
  • 29
    • 49349119632 scopus 로고
    • A note on the extension principle for fuzzy sets
    • H. T. Nguyen, "A note on the extension principle for fuzzy sets," J. Math. Anal. Appl., vol. 64, no. 2, pp. 369-380, 1978.
    • (1978) J. Math. Anal. Appl. , vol.64 , Issue.2 , pp. 369-380
    • Nguyen, H.T.1
  • 30
    • 0034204767 scopus 로고    scopus 로고
    • Iterative inversion of fuzzified neural networks
    • S. Park and T. Han, "Iterative inversion of fuzzified neural networks," IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 268-280, 2000.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.3 , pp. 268-280
    • Park, S.1    Han, T.2
  • 31
    • 0016990059 scopus 로고
    • Some convergence properties of the conjugate gradient method
    • M. J. D. Powell, "Some convergence properties of the conjugate gradient method," Math. Prog., vol. 11, no. 1, pp. 42-49, 1976.
    • (1976) Math. Prog. , vol.11 , Issue.1 , pp. 42-49
    • Powell, M.J.D.1
  • 32
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • F. Scarselli and A. C. Tosi, "Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results," Neural Networks, vol. 11, no. 1, pp. 15-37, 1998.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tosi, A.C.2
  • 33
    • 0039778443 scopus 로고    scopus 로고
    • An efficient computational algorithm for min-max operations
    • X. H. Zhang et al., "An efficient computational algorithm for min-max operations," Fuzzy Sets Syst., vol. 104, no. 2, pp. 297-304, 1999.
    • (1999) Fuzzy Sets Syst. , vol.104 , Issue.2 , pp. 297-304
    • Zhang, X.H.1
  • 34
    • 0030244497 scopus 로고    scopus 로고
    • The min-max function differentiation and training of fuzzy neural networks
    • Nov.
    • X. H. Zhang et al., "The min-max function differentiation and training of fuzzy neural networks," IEEE Trans. Neural Networks, vol. 7, pp. 1139-1150, Nov. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1139-1150
    • Zhang, X.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.