메뉴 건너뛰기




Volumn 90, Issue 4, 2010, Pages 1197-1208

Distributed variational Bayesian algorithms for Gaussian mixtures in sensor networks

Author keywords

Clustering; Density estimation; Mixture of Gaussians; Sensor networks; Variational approximations

Indexed keywords

COMPONENT PARAMETERS; DENSITY ESTIMATION; DISTRIBUTED PROCESSING; DISTRIBUTED TARGET; ENVIRONMENTAL FEATURES; ENVIRONMENTAL MONITORING; GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURES; MIXTURE OF GAUSSIANS; MODEL COMPLEXITY; SENSOR DATA; SIMULATION RESULT; VARIATIONAL APPROACHES; VARIATIONAL APPROXIMATION; VARIATIONAL BAYESIAN;

EID: 72949107801     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2009.10.004     Document Type: Article
Times cited : (33)

References (26)
  • 3
    • 33747068503 scopus 로고    scopus 로고
    • Cooperative information maximization with Gaussian activation functions for self-organizing maps
    • Kamimura R. Cooperative information maximization with Gaussian activation functions for self-organizing maps. IEEE Transactions on Neural Networks 17 4 (2006) 909-918
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 909-918
    • Kamimura, R.1
  • 8
    • 33746371214 scopus 로고    scopus 로고
    • A kernel-based learning approach to ad hoc sensor network localization
    • Nguyen X., Jordan M.I., and Sinopoli B. A kernel-based learning approach to ad hoc sensor network localization. ACM Transactions on Sensor Networks 1 1 (2005) 134-152
    • (2005) ACM Transactions on Sensor Networks , vol.1 , Issue.1 , pp. 134-152
    • Nguyen, X.1    Jordan, M.I.2    Sinopoli, B.3
  • 9
    • 3042699000 scopus 로고    scopus 로고
    • A learning theory approach to sensor networks
    • Simic S. A learning theory approach to sensor networks. IEEE Pervasive Computing 2 4 (2003) 44-49
    • (2003) IEEE Pervasive Computing , vol.2 , Issue.4 , pp. 44-49
    • Simic, S.1
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • Dempster A., and Rubin D. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39 (1977) 1-38
    • (1977) Journal of Royal Statistical Society , vol.39 , pp. 1-38
    • Dempster, A.1    Rubin, D.2
  • 13
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Jordan M. (Ed), MIT Press, Cambridge, MA
    • Neal R., and Hinton G. A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan M. (Ed). Learning in Graphical Models (1999), MIT Press, Cambridge, MA 355-368
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 14
    • 0042164384 scopus 로고    scopus 로고
    • Distributed EM algorithms for density estimation and clustering in sensor networks
    • Nowak R.D. Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Transactions on Signal Processing 51 (2003) 2245-2253
    • (2003) IEEE Transactions on Signal Processing , vol.51 , pp. 2245-2253
    • Nowak, R.D.1
  • 16
    • 48949116234 scopus 로고    scopus 로고
    • Distributed EM algorithm for Gaussian mixtures in sensor networks
    • Gu D. Distributed EM algorithm for Gaussian mixtures in sensor networks. IEEE Transactions on Neural Networks 19 7 (2008) 1154-1166
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.7 , pp. 1154-1166
    • Gu, D.1
  • 18
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Leen T., et al. (Ed), MIT Press, Cambridge, MA
    • Attias H. A variational Bayesian framework for graphical models. In: Leen T., et al. (Ed). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Attias, H.1
  • 19
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • Constantinopoulos C., and Likas A. Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE Transactions on Neural Networks 18 3 (2007) 745-755
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 20
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Jaakkola T., and Richardson T. (Eds), Morgan Kaufman, Los Altos, CA
    • Corduneanu A., and Bishop C.M. Variational Bayesian model selection for mixture distributions. In: Jaakkola T., and Richardson T. (Eds). Artificial Intelligence and Statistics (2001), Morgan Kaufman, Los Altos, CA 27-34
    • (2001) Artificial Intelligence and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 21
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory C.A., and Titterington D.M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis 51 (2007) 5352-5367
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 22
    • 0009019034 scopus 로고    scopus 로고
    • Variational Bayes for 1-dimensional mixture models
    • Technical Report PARG-2000-01, Department of Engineering Science, Oxford University
    • W.D. Penny, S.J. Roberts, Variational Bayes for 1-dimensional mixture models, Technical Report PARG-2000-01, Department of Engineering Science, Oxford University, 2000.
    • (2000)
    • Penny, W.D.1    Roberts, S.J.2
  • 24
    • 33745841556 scopus 로고    scopus 로고
    • Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
    • Wang B., and Titterington D.M. Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Analysis 1 3 (2006) 625-650
    • (2006) Bayesian Analysis , vol.1 , Issue.3 , pp. 625-650
    • Wang, B.1    Titterington, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.