-
2
-
-
85074375621
-
Next century challenges: Scalable coordination in sensor networks
-
Seattle, WA
-
D. Estrin, R. Govindan, J. Heidmann, S. Kumar, Next century challenges: scalable coordination in sensor networks, in: Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, WA, 1999, pp. 263-270.
-
(1999)
Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
, pp. 263-270
-
-
Estrin, D.1
Govindan, R.2
Heidmann, J.3
Kumar, S.4
-
3
-
-
33747068503
-
Cooperative information maximization with Gaussian activation functions for self-organizing maps
-
Kamimura R. Cooperative information maximization with Gaussian activation functions for self-organizing maps. IEEE Transactions on Neural Networks 17 4 (2006) 909-918
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.4
, pp. 909-918
-
-
Kamimura, R.1
-
4
-
-
33744915783
-
Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor networks
-
Los Angeles, CA
-
Y. Sheng, X. Hu, P. Ramanathan, Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor networks, in: Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, 2005, pp. 181-188.
-
(2005)
Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks
, pp. 181-188
-
-
Sheng, Y.1
Hu, X.2
Ramanathan, P.3
-
5
-
-
33947403146
-
Distributed data mining in peer-to-peer networks
-
Datta S., Bhaduri K., Giannella C., Wolff R., and Kargupta H. Distributed data mining in peer-to-peer networks. IEEE Internet Computing 10 (2006) 18-26
-
(2006)
IEEE Internet Computing
, vol.10
, pp. 18-26
-
-
Datta, S.1
Bhaduri, K.2
Giannella, C.3
Wolff, R.4
Kargupta, H.5
-
7
-
-
67650380238
-
Efficient kernel density estimation over distributed data
-
C. Giannella, H. Dutta, S. Mukherjee, H. Kargupta, Efficient kernel density estimation over distributed data, in: Ninth International Workshop on High Performance and Distributed Mining, SIAM International Conference on Data Mining, 2006.
-
(2006)
Ninth International Workshop on High Performance and Distributed Mining, SIAM International Conference on Data Mining
-
-
Giannella, C.1
Dutta, H.2
Mukherjee, S.3
Kargupta, H.4
-
8
-
-
33746371214
-
A kernel-based learning approach to ad hoc sensor network localization
-
Nguyen X., Jordan M.I., and Sinopoli B. A kernel-based learning approach to ad hoc sensor network localization. ACM Transactions on Sensor Networks 1 1 (2005) 134-152
-
(2005)
ACM Transactions on Sensor Networks
, vol.1
, Issue.1
, pp. 134-152
-
-
Nguyen, X.1
Jordan, M.I.2
Sinopoli, B.3
-
9
-
-
3042699000
-
A learning theory approach to sensor networks
-
Simic S. A learning theory approach to sensor networks. IEEE Pervasive Computing 2 4 (2003) 44-49
-
(2003)
IEEE Pervasive Computing
, vol.2
, Issue.4
, pp. 44-49
-
-
Simic, S.1
-
12
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the EM algorithm
-
Dempster A., and Rubin D. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39 (1977) 1-38
-
(1977)
Journal of Royal Statistical Society
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Rubin, D.2
-
13
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
Jordan M. (Ed), MIT Press, Cambridge, MA
-
Neal R., and Hinton G. A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan M. (Ed). Learning in Graphical Models (1999), MIT Press, Cambridge, MA 355-368
-
(1999)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
-
14
-
-
0042164384
-
Distributed EM algorithms for density estimation and clustering in sensor networks
-
Nowak R.D. Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Transactions on Signal Processing 51 (2003) 2245-2253
-
(2003)
IEEE Transactions on Signal Processing
, vol.51
, pp. 2245-2253
-
-
Nowak, R.D.1
-
15
-
-
33646519705
-
-
MIT Press, Cambridge, MA
-
W. Kowalczyk, N. Vlassis, Newscast EM, in: Advances in Neural Information Processing Systems, vol. 17, MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
-
-
Kowalczyk, W.1
Vlassis, N.2
Newscast, E.M.3
-
16
-
-
48949116234
-
Distributed EM algorithm for Gaussian mixtures in sensor networks
-
Gu D. Distributed EM algorithm for Gaussian mixtures in sensor networks. IEEE Transactions on Neural Networks 19 7 (2008) 1154-1166
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.7
, pp. 1154-1166
-
-
Gu, D.1
-
18
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
Leen T., et al. (Ed), MIT Press, Cambridge, MA
-
Attias H. A variational Bayesian framework for graphical models. In: Leen T., et al. (Ed). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Attias, H.1
-
19
-
-
34248648503
-
Unsupervised learning of Gaussian mixtures based on variational component splitting
-
Constantinopoulos C., and Likas A. Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE Transactions on Neural Networks 18 3 (2007) 745-755
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.3
, pp. 745-755
-
-
Constantinopoulos, C.1
Likas, A.2
-
20
-
-
4043061882
-
Variational Bayesian model selection for mixture distributions
-
Jaakkola T., and Richardson T. (Eds), Morgan Kaufman, Los Altos, CA
-
Corduneanu A., and Bishop C.M. Variational Bayesian model selection for mixture distributions. In: Jaakkola T., and Richardson T. (Eds). Artificial Intelligence and Statistics (2001), Morgan Kaufman, Los Altos, CA 27-34
-
(2001)
Artificial Intelligence and Statistics
, pp. 27-34
-
-
Corduneanu, A.1
Bishop, C.M.2
-
21
-
-
34247869715
-
Variational approximations in Bayesian model selection for finite mixture distributions
-
McGrory C.A., and Titterington D.M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis 51 (2007) 5352-5367
-
(2007)
Computational Statistics & Data Analysis
, vol.51
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
22
-
-
0009019034
-
Variational Bayes for 1-dimensional mixture models
-
Technical Report PARG-2000-01, Department of Engineering Science, Oxford University
-
W.D. Penny, S.J. Roberts, Variational Bayes for 1-dimensional mixture models, Technical Report PARG-2000-01, Department of Engineering Science, Oxford University, 2000.
-
(2000)
-
-
Penny, W.D.1
Roberts, S.J.2
-
23
-
-
0001878447
-
Bayesian methods for mixtures of experts
-
Touretzky D.S., et al. (Ed), MIT Press, Cambridge, MA
-
Waterhouse S., MacKay D., and Robinson T. Bayesian methods for mixtures of experts. In: Touretzky D.S., et al. (Ed). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge, MA
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Waterhouse, S.1
MacKay, D.2
Robinson, T.3
-
24
-
-
33745841556
-
Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
-
Wang B., and Titterington D.M. Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Analysis 1 3 (2006) 625-650
-
(2006)
Bayesian Analysis
, vol.1
, Issue.3
, pp. 625-650
-
-
Wang, B.1
Titterington, D.M.2
-
26
-
-
0033336275
-
Learning mixtures of Gaussians
-
Washington, DC, USA
-
S. Dasgupta, Learning mixtures of Gaussians, in: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, 1999, p. 634.
-
(1999)
Proceedings of the 40th Annual Symposium on Foundations of Computer Science
, pp. 634
-
-
Dasgupta, S.1
|