메뉴 건너뛰기




Volumn 80, Issue 16, 2009, Pages

Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As

Author keywords

[No Author keywords available]

Indexed keywords


EID: 72849150877     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.80.165204     Document Type: Article
Times cited : (17)

References (38)
  • 1
    • 0001613204 scopus 로고
    • 10.1098/rspl.1856.0144
    • W. Thomson, Proc. R. Soc. Lond. 8, 546 (1857). 10.1098/rspl.1856.0144
    • (1857) Proc. R. Soc. Lond. , vol.8 , pp. 546
    • Thomson, W.1
  • 3
    • 84956274005 scopus 로고
    • 10.1209/0295-5075/32/6/010
    • J. Banhart and H. Ebert, Europhys. Lett. 32, 517 (1995). 10.1209/0295-5075/32/6/010
    • (1995) Europhys. Lett. , vol.32 , pp. 517
    • Banhart, J.1    Ebert, H.2
  • 5
    • 84945067259 scopus 로고
    • 10.1080/00018736400101041
    • N. F. Mott, Adv. Phys. 13, 325 (1964). 10.1080/00018736400101041
    • (1964) Adv. Phys. , vol.13 , pp. 325
    • Mott, N.F.1
  • 6
    • 0001429010 scopus 로고
    • 10.1103/PhysRevB.34.1853
    • A. P. Malozemoff, Phys. Rev. B 34, 1853 (1986). 10.1103/PhysRevB.34.1853
    • (1986) Phys. Rev. B , vol.34 , pp. 1853
    • Malozemoff, A.P.1
  • 9
    • 44449175611 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.77.205210 and references therein to the experimental work on AMR in general.
    • W. Limmer, J. Daeubler, L. Dreher, M. Glunk, W. Schoch, S. Schwaiger, and R. Sauer, Phys. Rev. B 77, 205210 (2008) 10.1103/PhysRevB.77.205210 and references therein to the experimental work on AMR in general.
    • (2008) Phys. Rev. B , vol.77 , pp. 205210
    • Limmer, W.1    Daeubler, J.2    Dreher, L.3    Glunk, M.4    Schoch, W.5    Schwaiger, S.6    Sauer, R.7
  • 10
    • 72849135341 scopus 로고    scopus 로고
    • Thus induced anisotropy of Fermi surfaces can nicely be illustrated on Fig.. Consider the spin texture in Fig. as a typical example of SOI effect. Exchange splitting due to magnetization oriented horizontally in Fig., effectively acts as a Zeeman energy due to fictitious 'magnetic field' B with the same orientation, see Eq.. The states with wave vector k∥B will be shifted upward (downward) in energy because their spin is parallel (antiparallel) to B while the states k∥B remain intact. This k -anisotropic shift in energy can be translated into the splitting of Fermi wave vectors of the two originally degenerate bands.
    • Thus induced anisotropy of Fermi surfaces can nicely be illustrated on Fig. Consider the spin texture in Fig. as a typical example of SOI effect. Exchange splitting due to magnetization oriented horizontally in Fig., effectively acts as a Zeeman energy due to fictitious 'magnetic field' B with the same orientation, see Eq. The states with wave vector k∥B will be shifted upward (downward) in energy because their spin is parallel (antiparallel) to B while the states k∥B remain intact. This k -anisotropic shift in energy can be translated into the splitting of Fermi wave vectors of the two originally degenerate bands.
  • 24
  • 25
    • 36149026177 scopus 로고
    • 10.1103/PhysRev.102.1030
    • J. M. Luttinger, Phys. Rev. 102, 1030 (1956); 10.1103/PhysRev.102.1030
    • (1956) Phys. Rev. , vol.102 , pp. 1030
    • Luttinger, J.M.1
  • 33
    • 0347059568 scopus 로고
    • 10.1103/PhysRev.121.1320
    • J. M. Ziman, Phys. Rev. 121, 1320 (1961). 10.1103/PhysRev.121.1320
    • (1961) Phys. Rev. , vol.121 , pp. 1320
    • Ziman, J.M.1
  • 35
    • 43049145018 scopus 로고    scopus 로고
    • 10.1088/0953-8984/20/02/023201
    • N. A. Sinitsyn, J. Phys.: Condens. Matter 20, 023201 (2008). 10.1088/0953-8984/20/02/023201
    • (2008) J. Phys.: Condens. Matter , vol.20 , pp. 023201
    • Sinitsyn, N.A.1
  • 37
    • 72849119836 scopus 로고    scopus 로고
    • Note that once we have set h=0 in Eq., the theoretical AMR depends on the Mn doping x only through the carrier density p [nm-3] =0.22×x [%], because NMn appearing in Eq. drops out in Eq.. This fact should not be taken ad absurdum (NMn →0) because we still assume that the substitutional Mn impurities provide the dominant source of scattering. Presence of other concurrent types of impurities [which is important when we compare the calculated AMR to experiments (Ref.)] will make the AMR depend on the ratio between their concentration and NMn. Nevertheless, this interplay will not simply obey Matthiessen's rule since we deal with anisotropic systems (Ref.).
    • Note that once we have set h=0 in Eq., the theoretical AMR depends on the Mn doping x only through the carrier density p [nm-3] =0.22×x [%], because NMn appearing in Eq. drops out in Eq. This fact should not be taken ad absurdum (NMn →0) because we still assume that the substitutional Mn impurities provide the dominant source of scattering. Presence of other concurrent types of impurities [which is important when we compare the calculated AMR to experiments (Ref.)] will make the AMR depend on the ratio between their concentration and NMn. Nevertheless, this interplay will not simply obey Matthiessen's rule since we deal with anisotropic systems (Ref.).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.