-
1
-
-
16544393274
-
Epidemiology of spinal cord injury in children and adolescents
-
DeVivo MJ, Vogel LC. Epidemiology of spinal cord injury in children and adolescents. J Spinal Cord Med 2004;27(suppl 1):S4 -10.
-
(2004)
J Spinal Cord Med
, vol.27
, Issue.SUPPL. 1
-
-
Devivo, M.J.1
Vogel, L.C.2
-
2
-
-
0036594943
-
Adults with pediatric-onset spinal cord injury. Part 1: Prevalence of medical complications
-
Vogel LC, Krajci KA, Anderson CJ. Adults with pediatric-onset spinal cord injury. Part 1: prevalence of medical complications. J Spinal Cord Med 2002; 25:106-116
-
(2002)
J Spinal Cord Med
, vol.25
, pp. 106-116
-
-
Vogel, L.C.1
Krajci, K.A.2
Anderson, C.J.3
-
3
-
-
20844439022
-
Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury
-
Li S, Liu BP, Budel S, et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 2004;24:10511-10520
-
(2004)
J Neurosci
, vol.24
, pp. 10511-10520
-
-
Li, S.1
Liu, B.P.2
Budel, S.3
-
4
-
-
6344220137
-
A neutralizing anti-Nogo66 receptor monoclonal antibody reverses inhibition of neurite outgrowth by central nervous system myelin
-
Li W, Walus L, Rabacchi SA, et al. A neutralizing anti-Nogo66 receptor monoclonal antibody reverses inhibition of neurite outgrowth by central nervous system myelin. J Biol Chem 2004;279:43780-43788
-
(2004)
J Biol Chem
, vol.279
, pp. 43780-43788
-
-
Li, W.1
Walus, L.2
Rabacchi, S.A.3
-
5
-
-
28844485636
-
Inhibition of Nogo: A key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system
-
Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med 2005;37:556-567
-
(2005)
Ann Med
, vol.37
, pp. 556-567
-
-
Buchli, A.D.1
Schwab, M.E.2
-
6
-
-
18144393017
-
Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury
-
Li S, Kim JE, Budel S, et al. Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury. Mol Cell Neurosci 2005;29:26-39.
-
(2005)
Mol Cell Neurosci
, vol.29
, pp. 26-39
-
-
Li, S.1
Kim, J.E.2
Budel, S.3
-
7
-
-
42449104410
-
Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat
-
Cao Y, Shumsky JS, Sabol MA, et al. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 2008;22:262-278
-
(2008)
Neurorehabil Neural Repair
, vol.22
, pp. 262-278
-
-
Cao, Y.1
Shumsky, J.S.2
Sabol, M.A.3
-
8
-
-
0037071890
-
Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation
-
Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 2002;34:885-893
-
(2002)
Neuron
, vol.34
, pp. 885-893
-
-
Neumann, S.1
Bradke, F.2
Tessier-Lavigne, M.3
-
9
-
-
0347694856
-
Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase
-
Gao Y, Nikulina E, Mellado W, et al. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J Neurosci 2003;23:11770-11777
-
(2003)
J Neurosci
, vol.23
, pp. 11770-11777
-
-
Gao, Y.1
Nikulina, E.2
Mellado, W.3
-
10
-
-
3242711266
-
Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury
-
Lu P, Yang H, Jones LL, et al. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 2004;24:6402-6409
-
(2004)
J Neurosci
, vol.24
, pp. 6402-6409
-
-
Lu, P.1
Yang, H.2
Jones, L.L.3
-
11
-
-
2942720519
-
CAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
-
Pearse DD, Pereira FC, Marcillo AE, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004;10:610-616
-
(2004)
Nat Med
, vol.10
, pp. 610-616
-
-
Pearse, D.D.1
Pereira, F.C.2
Marcillo, A.E.3
-
12
-
-
0033937128
-
Locomotor training after human spinal cord injury: A series of case studies
-
Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 2000;80:688-700.
-
(2000)
Phys Ther
, vol.80
, pp. 688-700
-
-
Behrman, A.L.1
Harkema, S.J.2
-
13
-
-
33749863649
-
Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
-
Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 2006;26:10564-10568
-
(2006)
J Neurosci
, vol.26
, pp. 10564-10568
-
-
Cai, L.L.1
Fong, A.J.2
Otoshi, C.K.3
-
14
-
-
0033817622
-
Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats
-
Peterson CA, Murphy RJ, Dupont-Versteegden EE, et al. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats. Neurorehabil Neural Repair 2000;14:85-91.
-
(2000)
Neurorehabil Neural Repair
, vol.14
, pp. 85-91
-
-
Peterson, C.A.1
Murphy, R.J.2
Dupont-Versteegden, E.E.3
-
15
-
-
0842326017
-
Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats
-
Beaumont E, Houle JD, Peterson CA, et al. Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats. Muscle Nerve 2004;29:234-242
-
(2004)
Muscle Nerve
, vol.29
, pp. 234-242
-
-
Beaumont, E.1
Houle, J.D.2
Peterson, C.A.3
-
18
-
-
44449124104
-
Stem and progenitor cell therapies: Recent progress for spinal cord injury repair
-
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008;30:5-16.
-
(2008)
Neurol Res
, vol.30
, pp. 5-16
-
-
Louro, J.1
Pearse, D.D.2
-
19
-
-
0344872783
-
Cellular transplants: Steps toward restoration of function in spinal injured animals
-
Murray M. Cellular transplants: steps toward restoration of function in spinal injured animals. Prog Brain Res 2004;143:133-146
-
(2004)
Prog Brain Res
, vol.143
, pp. 133-146
-
-
Murray, M.1
-
20
-
-
47849122782
-
Stem cells in spinal cord injury
-
Wrathall JR, Lytle JM. Stem cells in spinal cord injury. Dis Markers 2008; 24:239-250
-
(2008)
Dis Markers
, vol.24
, pp. 239-250
-
-
Wrathall, J.R.1
Lytle, J.M.2
-
21
-
-
13844289150
-
Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations
-
Neuhuber B, Himes BT, Shumsky JS, et al. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 2005;1035:73-85.
-
(2005)
Brain Res
, vol.1035
, pp. 73-85
-
-
Neuhuber, B.1
Himes, B.T.2
Shumsky, J.S.3
-
22
-
-
11844273931
-
BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury
-
Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 2005;191:344-360
-
(2005)
Exp Neurol
, vol.191
, pp. 344-360
-
-
Lu, P.1
Jones, L.L.2
Tuszynski, M.H.3
-
23
-
-
2342499798
-
Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation
-
Ohta M, Suzuki Y, Noda T, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 2004;187:266-278
-
(2004)
Exp Neurol
, vol.187
, pp. 266-278
-
-
Ohta, M.1
Suzuki, Y.2
Noda, T.3
-
24
-
-
0037133174
-
Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery
-
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99:2199-2204
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 2199-2204
-
-
Hofstetter, C.P.1
Schwarz, E.J.2
Hess, D.3
-
25
-
-
0036703491
-
Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells
-
Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 2002; 22:6623-6630
-
(2002)
J Neurosci
, vol.22
, pp. 6623-6630
-
-
Akiyama, Y.1
Radtke, C.2
Kocsis, J.D.3
-
26
-
-
0034637810
-
Spinal cord injury in rat: Treatment with bone marrow stromal cell transplantation
-
Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 2000;11:3001-3005
-
(2000)
Neuroreport
, vol.11
, pp. 3001-3005
-
-
Chopp, M.1
Zhang, X.H.2
Li, Y.3
-
27
-
-
33646515566
-
Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord
-
Himes BT, Neuhuber B, Coleman C, et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 2006;20:278-296
-
(2006)
Neurorehabil Neural Repair
, vol.20
, pp. 278-296
-
-
Himes, B.T.1
Neuhuber, B.2
Coleman, C.3
-
28
-
-
35848939844
-
Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats
-
Dasari VR, Spomar DG, Cady C, et al. Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochem Res 2007;32:2080-2093
-
(2007)
Neurochem Res
, vol.32
, pp. 2080-2093
-
-
Dasari, V.R.1
Spomar, D.G.2
Cady, C.3
-
29
-
-
31944433392
-
Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: A novel method for minimally invasive cell transplantation
-
Bakshi A, Barshinger AL, Swanger SA, et al. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma 2006;23:55-65.
-
(2006)
J Neurotrauma
, vol.23
, pp. 55-65
-
-
Bakshi, A.1
Barshinger, A.L.2
Swanger, S.A.3
-
30
-
-
0036966234
-
Ischemic rat brain extracts induce human marrow stromal cell growth factor production
-
Chen X, Li Y, Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002;22: 275-279
-
(2002)
Neuropathology
, vol.22
, pp. 275-279
-
-
Chen, X.1
Li, Y.2
Wang, L.3
-
31
-
-
21244477905
-
Protective effects of bone marrow stromal cell transplantation in injured rodent brain: Synthesis of neurotrophic factors
-
Chen Q, Long Y, Yuan X, et al. Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 2005;80:611-619
-
(2005)
J Neurosci Res
, vol.80
, pp. 611-619
-
-
Chen, Q.1
Long, Y.2
Yuan, X.3
-
32
-
-
5444246148
-
Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells
-
Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 2004; 117:4411-4422
-
(2004)
J Cell Sci
, vol.117
, pp. 4411-4422
-
-
Hermann, A.1
Gastl, R.2
Liebau, S.3
-
33
-
-
0034537437
-
Adult bone marrow stromal cells differentiate into neural cell in vitro
-
Sanchez-Ramos JR, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cell in vitro. Exp Neurol 2000;164: 247-256
-
(2000)
Exp Neurol
, vol.164
, pp. 247-256
-
-
Sanchez-Ramos, J.R.1
Song, S.2
Cardozo-Pelaez, F.3
-
34
-
-
0037019337
-
Pluripotency of mesenchymal stem cells derived from adult marrow
-
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49
-
(2002)
Nature
, vol.418
, pp. 41-49
-
-
Jiang, Y.1
Jahagirdar, B.N.2
Reinhardt, R.L.3
-
35
-
-
0034937823
-
Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells
-
discussion 233-235
-
Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 2001; 938:231-3; discussion: 233-235
-
(2001)
Ann N y Acad Sci
, vol.938
, pp. 231-233
-
-
Reyes, M.1
Verfaillie, C.M.2
-
36
-
-
0141449132
-
Tales of transdifferentiation
-
Jin K, Greenberg DA. Tales of transdifferentiation. Exp Neurol 2003;183: 255-257
-
(2003)
Exp Neurol
, vol.183
, pp. 255-257
-
-
Jin, K.1
Greenberg, D.A.2
-
37
-
-
18144428744
-
Can bone marrow-derived stem cells differentiate into functional neurons?
-
Lu P, Tuszynski MH. Can bone marrow-derived stem cells differentiate into functional neurons? Exp Neurol 2005;193:273-278
-
(2005)
Exp Neurol
, vol.193
, pp. 273-278
-
-
Lu, P.1
Tuszynski, M.H.2
-
38
-
-
3042801100
-
Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype
-
Neuhuber B, Gallo G, Howard L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 2004;77:192-204.
-
(2004)
J Neurosci Res
, vol.77
, pp. 192-204
-
-
Neuhuber, B.1
Gallo, G.2
Howard, L.3
-
39
-
-
7944234688
-
Minimally invasive delivery of stem cells for spinal cord injury: Advantages of the lumbar puncture technique
-
Bakshi A, Hunter C, Swanger S, et al. Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 2004;1:330-337
-
(2004)
J Neurosurg Spine
, vol.1
, pp. 330-337
-
-
Bakshi, A.1
Hunter, C.2
Swanger, S.3
-
40
-
-
64749093912
-
Grafting of human bone marrow stromal cells into spinal cord injury: A comparision of delivery methods
-
Paul C, Samdani A, Betz R, et al. Grafting of human bone marrow stromal cells into spinal cord injury: a comparision of delivery methods. Spine 2009; 34:328-334
-
(2009)
Spine
, vol.34
, pp. 328-334
-
-
Paul, C.1
Samdani, A.2
Betz, R.3
-
41
-
-
0029116176
-
A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells
-
Lennon DP, Haynesworth SE, Young RG, et al. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 1995;219: 211-222
-
(1995)
Exp Cell Res
, vol.219
, pp. 211-222
-
-
Lennon, D.P.1
Haynesworth, S.E.2
Young, R.G.3
-
42
-
-
0005793375
-
Cellular composition of the bone marrow in normal infants and children
-
Glaser K, Limarzi LR, Poncher HG. Cellular composition of the bone marrow in normal infants and children. Pediatrics 1950;6:789-824.
-
(1950)
Pediatrics
, vol.6
, pp. 789-824
-
-
Glaser, K.1
Limarzi, L.R.2
Poncher, H.G.3
-
43
-
-
34548531511
-
Autotransplant conditioning regimens for aggressive lymphoma: Are we on the right road?
-
Fernandez HF, Escalon MP, Pereira D, et al. Autotransplant conditioning regimens for aggressive lymphoma: are we on the right road? Bone Marrow Transplant 2007;40:505-513
-
(2007)
Bone Marrow Transplant
, vol.40
, pp. 505-513
-
-
Fernandez, H.F.1
Escalon, M.P.2
Pereira, D.3
-
44
-
-
0346025617
-
Outcome after autologous and allogeneic stem cell transplantation for patients with multiple myeloma: Impact of graft-versus-myeloma effect
-
Alyea E, Weller E, Schlossman R, et al. Outcome after autologous and allogeneic stem cell transplantation for patients with multiple myeloma: impact of graft-versus-myeloma effect. Bone Marrow Transplant 2003;32:1145-1151
-
(2003)
Bone Marrow Transplant
, vol.32
, pp. 1145-1151
-
-
Alyea, E.1
Weller, E.2
Schlossman, R.3
-
45
-
-
34548068374
-
Blood and marrow transplantation in elderly acute myeloid leukaemia patients-older certainly is not better
-
Kiss TL, Sabry W, Lazarus HM, et al. Blood and marrow transplantation in elderly acute myeloid leukaemia patients-older certainly is not better. Bone Marrow Transplant 2007;40:405-416
-
(2007)
Bone Marrow Transplant
, vol.40
, pp. 405-416
-
-
Kiss, T.L.1
Sabry, W.2
Lazarus, H.M.3
-
47
-
-
44449153972
-
Myeloablative therapy with autologous stem cell rescue for patients with Ewing sarcoma
-
Gardner SL, Carreras J, Boudreau C, et al. Myeloablative therapy with autologous stem cell rescue for patients with Ewing sarcoma. Bone Marrow Transplant 2008;41:867-872
-
(2008)
Bone Marrow Transplant
, vol.41
, pp. 867-872
-
-
Gardner, S.L.1
Carreras, J.2
Boudreau, C.3
-
48
-
-
45449097294
-
Matched unrelated bone marrow transplant for T combined immunodeficiency
-
Roifman CM, Somech R, Grunebaum E. Matched unrelated bone marrow transplant for T combined immunodeficiency. Bone Marrow Transplant 2008;41:947-952
-
(2008)
Bone Marrow Transplant
, vol.41
, pp. 947-952
-
-
Roifman, C.M.1
Somech, R.2
Grunebaum, E.3
-
50
-
-
33947305414
-
Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis
-
Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007;167:989-997
-
(2007)
Arch Intern Med
, vol.167
, pp. 989-997
-
-
Abdel-Latif, A.1
Bolli, R.2
Tleyjeh, I.M.3
-
51
-
-
37349113753
-
The therapeutic potential of stem cells in heart disease
-
Strauer BE, Brehm M, Schannwell CM. The therapeutic potential of stem cells in heart disease. Cell Prolif 2008;41(suppl 1):126-145
-
(2008)
Cell Prolif
, vol.41
, Issue.SUPPL. 1
, pp. 126-145
-
-
Strauer, B.E.1
Brehm, M.2
Schannwell, C.M.3
-
52
-
-
34347326019
-
Neuroprotective effect of bone marrow- derived mononuclear cells promoting functional recovery from spinal cord injury
-
Yoshihara T, Ohta M, Itokazu Y, et al. Neuroprotective effect of bone marrow- derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma 2007;24:1026-1036
-
(2007)
J Neurotrauma
, vol.24
, pp. 1026-1036
-
-
Yoshihara, T.1
Ohta, M.2
Itokazu, Y.3
-
53
-
-
33845549165
-
Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair
-
Sykova E, Jendelova P, Urdzikova L, et al. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006;26:1113-1129
-
(2006)
Cell Mol Neurobiol
, vol.26
, pp. 1113-1129
-
-
Sykova, E.1
Jendelova, P.2
Urdzikova, L.3
-
54
-
-
31844433193
-
Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study
-
Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 2006;34:130-131
-
(2006)
Exp Hematol
, vol.34
, pp. 130-131
-
-
Callera, F.1
Do Nascimento, R.X.2
-
55
-
-
33846240478
-
Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury
-
Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006;15:675-687
-
(2006)
Cell Transplant
, vol.15
, pp. 675-687
-
-
Sykova, E.1
Homola, A.2
Mazanec, R.3
-
56
-
-
38149140867
-
Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: The first clinical trial case report
-
Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 2008;64:53-59
-
(2008)
J Trauma
, vol.64
, pp. 53-59
-
-
Saito, F.1
Nakatani, T.2
Iwase, M.3
-
57
-
-
34648843856
-
Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients
-
Chernykh ER, Stupak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 2007;143:543-547
-
(2007)
Bull Exp Biol Med
, vol.143
, pp. 543-547
-
-
Chernykh, E.R.1
Stupak, V.V.2
Muradov, G.M.3
-
58
-
-
21844442589
-
Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor
-
Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005;11: 913-922
-
(2005)
Tissue Eng
, vol.11
, pp. 913-922
-
-
Park, H.C.1
Shim, Y.S.2
Ha, Y.3
-
59
-
-
34547915244
-
Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial
-
Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007;25:2066-2073
-
(2007)
Stem Cells
, vol.25
, pp. 2066-2073
-
-
Yoon, S.H.1
Shim, Y.S.2
Park, Y.H.3
-
60
-
-
33846187092
-
Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats
-
Urdzikova L, Jendelova P, Glogarova K, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 2006;23:1379-1391
-
(2006)
J Neurotrauma
, vol.23
, pp. 1379-1391
-
-
Urdzikova, L.1
Jendelova, P.2
Glogarova, K.3
-
61
-
-
2442713904
-
Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy
-
Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 2004;9:747-756
-
(2004)
Mol Ther
, vol.9
, pp. 747-756
-
-
Spees, J.L.1
Gregory, C.A.2
Singh, H.3
-
62
-
-
34648860537
-
Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury
-
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007;40:609-619
-
(2007)
Bone Marrow Transplant
, vol.40
, pp. 609-619
-
-
Parr, A.M.1
Tator, C.H.2
Keating, A.3
-
63
-
-
23844436492
-
Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat
-
discussion 92
-
Kuh SU, Cho YE, Yoon DH, et al. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 2005;147:985-92; discussion: 92.
-
(2005)
Acta Neurochir (Wien)
, vol.147
, pp. 985-992
-
-
Kuh, S.U.1
Cho, Y.E.2
Yoon, D.H.3
-
64
-
-
34250375421
-
The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats
-
Nishio Y, Koda M, Kamada T, et al. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine 2006;5:424-433
-
(2006)
J Neurosurg Spine
, vol.5
, pp. 424-433
-
-
Nishio, Y.1
Koda, M.2
Kamada, T.3
-
65
-
-
37549062158
-
Human umbilical cord blood-derived CD34 cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors
-
Kao CH, Chen SH, Chio CC, et al. Human umbilical cord blood-derived CD34 cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 2008;29:49-55.
-
(2008)
Shock
, vol.29
, pp. 49-55
-
-
Kao, C.H.1
Chen, S.H.2
Chio, C.C.3
-
66
-
-
27544440549
-
Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice
-
Koda M, Okada S, Nakayama T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport 2005;16:1763-1767
-
(2005)
Neuroreport
, vol.16
, pp. 1763-1767
-
-
Koda, M.1
Okada, S.2
Nakayama, T.3
|