메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 493-504

Feature weighted SVMs using receiver operating characteristics

Author keywords

Classification; Distance function; Receiver operating characteristics; Support vector machine

Indexed keywords

CLASSIFICATION PERFORMANCE; DATA SETS; DISTANCE FUNCTION; DISTANCE FUNCTIONS; FEATURE WEIGHTING; GENE EXPRESSION DATA; HIGH-DIMENSIONAL FEATURE SPACE; INPUT SPACE; KERNEL FUNCTION; RECEIVER OPERATING CHARACTERISTICS;

EID: 72849138148     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (36)
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1145-1159, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 72849147649 scopus 로고    scopus 로고
    • A Framework for Characterizing Feature Weighting and Selection Methods in Text Classification
    • Technical report MSR-TR-2005-09, Microsoft Research
    • J. Brank and N. Milic-Frayling. A Framework for Characterizing Feature Weighting and Selection Methods in Text Classification. Technical report MSR-TR-2005-09, Microsoft Research, 2005.
    • (2005)
    • Brank, J.1    Milic-Frayling, N.2
  • 4
    • 72849148876 scopus 로고    scopus 로고
    • Broad Institute Cancer Program. Online, 1999
    • Broad Institute Cancer Program. Online, 1999. http://www.broad.mit.edu/ cgi-bin/cancer/publications/pub-paper.cgi?mode=view&paper-id=43.
  • 5
    • 72849107439 scopus 로고    scopus 로고
    • Broad Institute Cancer Program. Online, 2002
    • Broad Institute Cancer Program. Online, 2002. http://www.broad.mit.edu/ cgi-bin/cancer/publications/pub-paper.cgi?mode=view&paper-id=75.
  • 6
    • 33750506073 scopus 로고    scopus 로고
    • An improved incremental training algorithm for support vector machines using active query
    • S. Cheng and F. Y. Shih. An improved incremental training algorithm for support vector machines using active query. Pattern Recognition, 40:964-971, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 964-971
    • Cheng, S.1    Shih, F.Y.2
  • 8
    • 12244287909 scopus 로고    scopus 로고
    • L. Deng, J. Pei, J. Ma, and D. L. Lee. A Rank Sum Test Method for Informative Gene Discovery. In Proc. of SIGKDD 04, pages 410-419, 2004.
    • L. Deng, J. Pei, J. Ma, and D. L. Lee. A Rank Sum Test Method for Informative Gene Discovery. In Proc. of SIGKDD 04, pages 410-419, 2004.
  • 9
    • 0345438685 scopus 로고    scopus 로고
    • ROC Graphs: Notes and Practical Considerations for Researchers
    • Technical Report MS 1143, Extended version of HPL-2003-4, HP Laboratories
    • T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report MS 1143 - Extended version of HPL-2003-4, HP Laboratories, 2004.
    • (2004)
    • Fawcett, T.1
  • 10
    • 72849120183 scopus 로고    scopus 로고
    • C. Ferri, P. Flach, and J. Hernández-Orallo. Learning decision trees using the area under the ROC curve. In Proc. of ICML 02, pages 139-146, 2002.
    • C. Ferri, P. Flach, and J. Hernández-Orallo. Learning decision trees using the area under the ROC curve. In Proc. of ICML 02, pages 139-146, 2002.
  • 11
    • 0037813165 scopus 로고    scopus 로고
    • An accelerated procedure for recursive feature ranking on microarray data
    • C. Furlanello, M. Serani, S. Merler, and G. Jurman. An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 16:641-648, 2003.
    • (2003) Neural Networks , vol.16 , pp. 641-648
    • Furlanello, C.1    Serani, M.2    Merler, S.3    Jurman, G.4
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular Classification of Cancer: Class Discovery and Class prediction by Gene Expression Monitoring
    • T. R. Golub, D. K. Slonim, P. Tamayo et al. Molecular Classification of Cancer: Class Discovery and Class prediction by Gene Expression Monitoring. Science, 286(5439):531-537, 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 14
    • 0036735386 scopus 로고    scopus 로고
    • Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer And Mesothelioma
    • G. J. Gordon, R. V. Jensen, Li-Li Hsiao et al. Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer And Mesothelioma. Cancer Research, 62:4963-4967, 2002.
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Li Hsiao, L.3
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 18
    • 56049105206 scopus 로고    scopus 로고
    • M. R. Hassan, M. M. Hossain, J. Bailey, and K. Ramamohanarao. Improving k-Nearest Neighbour Classification with Distance Functions based on Receiver Operating Characteristics. In Proc. of ECML/PKDD 08, pages 489-504, 2008.
    • M. R. Hassan, M. M. Hossain, J. Bailey, and K. Ramamohanarao. Improving k-Nearest Neighbour Classification with Distance Functions based on Receiver Operating Characteristics. In Proc. of ECML/PKDD 08, pages 489-504, 2008.
  • 20
    • 52649085294 scopus 로고    scopus 로고
    • M. M. Hossain, M. R. Hassan, and J. Bailey. ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data. In Proc. of SDM 08, pages 455-465, 2008.
    • M. M. Hossain, M. R. Hassan, and J. Bailey. ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data. In Proc. of SDM 08, pages 455-465, 2008.
  • 21
    • 24644457237 scopus 로고    scopus 로고
    • Weighting unusual feature types
    • Technical report, Department of Computer Science, Cornell University
    • N. Howe and C. Cardie. Weighting unusual feature types. Technical report, Department of Computer Science, Cornell University, 1999.
    • (1999)
    • Howe, N.1    Cardie, C.2
  • 23
    • 0011754884 scopus 로고    scopus 로고
    • The Utility of Feature Weighting in Nearest-Neighbor Algorithms
    • R. Kohavi, P. Langley, and Y. Yun. The Utility of Feature Weighting in Nearest-Neighbor Algorithms. In Proc. of ECML 97, pages 85-92, 1997.
    • (1997) Proc. of ECML , vol.97 , pp. 85-92
    • Kohavi, R.1    Langley, P.2    Yun, Y.3
  • 27
    • 72849121907 scopus 로고
    • Speaker recognition using a feature weighting technique
    • H. Ney and R. Gierloff. Speaker recognition using a feature weighting technique. In Proc. of ICASSP '82, pages 1645-1648, 1982.
    • (1982) Proc. of ICASSP '82 , pp. 1645-1648
    • Ney, H.1    Gierloff, R.2
  • 29
    • 44949258241 scopus 로고    scopus 로고
    • Multiclass SVM-RFE for product form feature selection
    • M.-D. Shieh and C.-C. Yang. Multiclass SVM-RFE for product form feature selection. Expert Systems with Applications, 35:531-541, 2008.
    • (2008) Expert Systems with Applications , vol.35 , pp. 531-541
    • Shieh, M.-D.1    Yang, C.-C.2
  • 30
    • 19044391072 scopus 로고    scopus 로고
    • Gene Expression Correlates of Clinical Prostate Cancer Behavior
    • D. Singh, P. G. Febbo, K. Ross et al. Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell, 1:203-209, 2002.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3
  • 32
    • 72849131030 scopus 로고    scopus 로고
    • The Division of Thoracic Surgery. Online, 2002
    • The Division of Thoracic Surgery. Online, 2002. http://www.chestsurg.org/ publications/2002-microarray.aspx.
  • 33
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L. J. van 't Veer, H. Dai, M. J. van de Vijver et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530-535, 2002.
    • (2002) Nature , vol.415 , pp. 530-535
    • van 't Veer, L.J.1    Dai, H.2    van de Vijver, M.J.3
  • 34
    • 34548861468 scopus 로고    scopus 로고
    • D. P. Vivencio, E. R. Hruschka Jr., M. do Carmo Nicoletti, E. B. dos Santos, and S. D. C. O. Galvão. Feature-weighted k-Nearest Neighbor Classifier. In Proc. of FOCI 07, pages 481-486, 2007.
    • D. P. Vivencio, E. R. Hruschka Jr., M. do Carmo Nicoletti, E. B. dos Santos, and S. D. C. O. Galvão. Feature-weighted k-Nearest Neighbor Classifier. In Proc. of FOCI 07, pages 481-486, 2007.
  • 36
    • 33745404627 scopus 로고    scopus 로고
    • Collaborative Filtering Algorithm Based on Mutual Information
    • Proc. of APWeb 2004
    • W. Ziqiang and F. Boqin. Collaborative Filtering Algorithm Based on Mutual Information. In Proc. of APWeb 2004, LNCS 3007, pages 405-415, 2004.
    • (2004) LNCS , vol.3007 , pp. 405-415
    • Ziqiang, W.1    Boqin, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.