-
1
-
-
34547309949
-
-
10.1088/0034-4885/70/6/R03
-
C. M. Bender, Rep. Prog. Phys. 70, 947 (2007). 10.1088/0034-4885/70/6/R03
-
(2007)
Rep. Prog. Phys.
, vol.70
, pp. 947
-
-
Bender, C.M.1
-
3
-
-
72649089094
-
-
arXiv:0810.5643 (unpublished).
-
A. Mostafazadeh, arXiv:0810.5643 (unpublished).
-
-
-
Mostafazadeh, A.1
-
6
-
-
5444266131
-
-
10.1023/B:CJOP.0000044002.05657.04
-
M. V. Berry, Czech. J. Phys. 54, 1039 (2004). 10.1023/B:CJOP.0000044002. 05657.04
-
(2004)
Czech. J. Phys.
, vol.54
, pp. 1039
-
-
Berry, M.V.1
-
11
-
-
18744381334
-
-
10.1088/0305-4470/38/21/L04
-
B. F. Samsonov, J. Phys. A 38, L397 (2005). 10.1088/0305-4470/38/21/L04
-
(2005)
J. Phys. A
, vol.38
, pp. 397
-
-
Samsonov, B.F.1
-
13
-
-
0010465259
-
-
10.1016/0370-1573(94)90177-5;
-
W. D. Heiss, Phys. Rep. 242, 443 (1994) 10.1016/0370-1573(94)90177-5
-
(1994)
Phys. Rep.
, vol.242
, pp. 443
-
-
Heiss, W.D.1
-
15
-
-
0342538622
-
-
10.1103/PhysRevLett.86.787;
-
C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 787 (2001) 10.1103/PhysRevLett.86. 787
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 787
-
-
Dembowski, C.1
Gräf, H.-D.2
Harney, H.L.3
Heine, A.4
Heiss, W.D.5
Rehfeld, H.6
Richter, A.7
-
16
-
-
85036229731
-
-
10.1103/PhysRevE.69.056216;
-
C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, Phys. Rev. E 69, 056216 (2004) 10.1103/PhysRevE.69.056216
-
(2004)
Phys. Rev. e
, vol.69
, pp. 056216
-
-
Dembowski, C.1
Dietz, B.2
Gräf, H.-D.3
Harney, H.L.4
Heine, A.5
Heiss, W.D.6
Richter, A.7
-
22
-
-
48249137769
-
-
10.1088/1751-8113/41/24/244018
-
M. Müller and I. Rotter, J. Phys. A 41, 244018 (2008). 10.1088/1751-8113/41/24/244018
-
(2008)
J. Phys. A
, vol.41
, pp. 244018
-
-
Müller, M.1
Rotter, I.2
-
23
-
-
66749184063
-
-
10.1103/PhysRevLett.102.220402
-
A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009). 10.1103/PhysRevLett.102.220402
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 220402
-
-
Mostafazadeh, A.1
-
24
-
-
33947257382
-
-
10.1088/0305-4470/39/43/008
-
A. Mostafazadeh, J. Phys. A 39, 13495 (2006). 10.1088/0305-4470/39/43/008
-
(2006)
J. Phys. A
, vol.39
, pp. 13495
-
-
Mostafazadeh, A.1
-
25
-
-
72649095826
-
-
arXiv:0908.2876 (unpublished).
-
Z. Ahmedar, arXiv:0908.2876 (unpublished).
-
-
-
Ahmedar, Z.1
-
26
-
-
2342428011
-
-
10.1016/j.physrep.2004.03.002
-
J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys. Rep. 395, 357 (2004). 10.1016/j.physrep.2004.03.002
-
(2004)
Phys. Rep.
, vol.395
, pp. 357
-
-
Muga, J.G.1
Palao, J.P.2
Navarro, B.3
Egusquiza, I.L.4
-
27
-
-
70349513783
-
-
10.1103/PhysRevA.80.032711
-
A. Mostafazadeh, Phys. Rev. A 80, 032711 (2009). 10.1103/PhysRevA.80. 032711
-
(2009)
Phys. Rev. A
, vol.80
, pp. 032711
-
-
Mostafazadeh, A.1
-
30
-
-
2842515744
-
-
10.1103/PhysRev.124.1866
-
U. Fano, Phys. Rev. 124, 1866 (1961). 10.1103/PhysRev.124.1866
-
(1961)
Phys. Rev.
, vol.124
, pp. 1866
-
-
Fano, U.1
-
31
-
-
2842617037
-
-
10.1103/PhysRev.124.41
-
P. W. Anderson, Phys. Rev. 124, 41 (1961). 10.1103/PhysRev.124.41
-
(1961)
Phys. Rev.
, vol.124
, pp. 41
-
-
Anderson, P.W.1
-
36
-
-
0033940131
-
-
10.1088/0034-4885/63/4/201
-
P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, Rep. Prog. Phys. 63, 455 (2000). 10.1088/0034-4885/63/4/201
-
(2000)
Rep. Prog. Phys.
, vol.63
, pp. 455
-
-
Lambropoulos, P.1
Nikolopoulos, G.M.2
Nielsen, T.R.3
Bay, S.4
-
37
-
-
0003964324
-
-
Plenum Press, New York
-
G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990), pp. 272-285.
-
(1990)
Many-Particle Physics
, pp. 272-285
-
-
Mahan, G.D.1
-
40
-
-
0000175796
-
-
10.1103/PhysRevB.57.12127;
-
N. Stefanou and A. Modinos, Phys. Rev. B 57, 12127 (1998) 10.1103/PhysRevB.57.12127
-
(1998)
Phys. Rev. B
, vol.57
, pp. 12127
-
-
Stefanou, N.1
Modinos, A.2
-
42
-
-
33748565601
-
-
10.1103/PhysRevA.74.032102;
-
L. Zhou, F. M. Hu, J. Lu, and C. P. Sun, Phys. Rev. A 74, 032102 (2006) 10.1103/PhysRevA.74.032102
-
(2006)
Phys. Rev. A
, vol.74
, pp. 032102
-
-
Zhou, L.1
Hu, F.M.2
Lu, J.3
Sun, C.P.4
-
46
-
-
72649093126
-
-
10.1103/PhysRevB.80.045309
-
P. Zedler, G. Schaller, G. Kiesslich, C. Emary, and T. Brandes, Phys. Rev. B 80, 045309 (2009). 10.1103/PhysRevB.80.045309
-
(2009)
Phys. Rev. B
, vol.80
, pp. 045309
-
-
Zedler, P.1
Schaller, G.2
Kiesslich, G.3
Emary, C.4
Brandes, T.5
-
48
-
-
41649103791
-
-
10.1103/PhysRevB.76.153308;
-
S. Tanaka, S. Garmon, G. Ordonez, and T. Petrosky, Phys. Rev. B 76, 153308 (2007) 10.1103/PhysRevB.76.153308
-
(2007)
Phys. Rev. B
, vol.76
, pp. 153308
-
-
Tanaka, S.1
Garmon, S.2
Ordonez, G.3
Petrosky, T.4
-
49
-
-
36249019361
-
-
10.1103/PhysRevLett.99.210404
-
H. Nakamura, N. Hatano, S. Garmon, and T. Petrosky, Phys. Rev. Lett. 99, 210404 (2007). 10.1103/PhysRevLett.99.210404
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 210404
-
-
Nakamura, H.1
Hatano, N.2
Garmon, S.3
Petrosky, T.4
-
56
-
-
0035981064
-
-
10.1103/PhysRevLett.87.270405;
-
A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 87, 270405 (2001) 10.1103/PhysRevLett.87.270405
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 270405
-
-
Kofman, A.G.1
Kurizki, G.2
-
57
-
-
0142057466
-
-
10.1103/PhysRevLett.91.113904;
-
X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, Phys. Rev. Lett. 91, 113904 (2003) 10.1103/PhysRevLett.91.113904
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 113904
-
-
Wang, X.-H.1
Gu, B.-Y.2
Wang, R.3
Xu, H.-Q.4
-
58
-
-
66749127243
-
-
10.1103/PhysRevA.79.062104
-
J. Martorell, D. W. L. Sprung, W. van Dijk, and J. G. Muga, Phys. Rev. A 79, 062104 (2009). 10.1103/PhysRevA.79.062104
-
(2009)
Phys. Rev. A
, vol.79
, pp. 062104
-
-
Martorell, J.1
Sprung, D.W.L.2
Van Dijk, W.3
Muga, J.G.4
-
59
-
-
11744322865
-
-
10.1103/PhysRevLett.80.960;
-
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Phys. Rev. Lett. 80, 960 (1998) 10.1103/PhysRevLett.80.960
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 960
-
-
Fan, S.1
Villeneuve, P.R.2
Joannopoulos, J.D.3
Haus, H.A.4
-
60
-
-
0001138345
-
-
10.1103/PhysRevB.59.15882;
-
S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, Phys. Rev. B 59, 15882 (1999) 10.1103/PhysRevB.59.15882
-
(1999)
Phys. Rev. B
, vol.59
, pp. 15882
-
-
Fan, S.1
Villeneuve, P.R.2
Joannopoulos, J.D.3
Khan, M.J.4
Manolatou, C.5
Haus, H.A.6
-
63
-
-
0034318441
-
-
10.1103/PhysRevE.62.7389
-
Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000). 10.1103/PhysRevE.62.7389
-
(2000)
Phys. Rev. e
, vol.62
, pp. 7389
-
-
Xu, Y.1
Li, Y.2
Lee, R.K.3
Yariv, A.4
-
64
-
-
33846359224
-
-
10.1103/PhysRevA.74.063826
-
S. Longhi, Phys. Rev. A 74, 063826 (2006). 10.1103/PhysRevA.74.063826
-
(2006)
Phys. Rev. A
, vol.74
, pp. 063826
-
-
Longhi, S.1
-
65
-
-
34249885323
-
-
10.1140/epjb/e2007-00143-2
-
S. Longhi, Eur. Phys. J. B 57, 45 (2007). 10.1140/epjb/e2007-00143-2
-
(2007)
Eur. Phys. J. B
, vol.57
, pp. 45
-
-
Longhi, S.1
-
66
-
-
33748533452
-
-
10.1103/PhysRevLett.97.110402;
-
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006) 10.1103/PhysRevLett.97. 110402
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 110402
-
-
Longhi, S.1
-
67
-
-
41149162329
-
-
10.1364/OE.16.003762
-
P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duo, P. Laporta, and S. Longhi, Opt. Express 16, 3762 (2008). 10.1364/OE.16.003762
-
(2008)
Opt. Express
, vol.16
, pp. 3762
-
-
Biagioni, P.1
Della Valle, G.2
Ornigotti, M.3
Finazzi, M.4
Duo, L.5
Laporta, P.6
Longhi, S.7
-
69
-
-
0345783928
-
-
edited by E. Tirapegui (Reidel, Dordrecht
-
G. Sudarshan, in Field Theory, Quantization and Statistical Physics, edited by, E. Tirapegui, (Reidel, Dordrecht, 1981), pp. 237-245.
-
(1981)
Field Theory, Quantization and Statistical Physics
, pp. 237-245
-
-
Sudarshan, G.1
-
70
-
-
28844460677
-
-
10.1103/PhysRevA.72.063405
-
M. Miyamoto, Phys. Rev. A 72, 063405 (2005). 10.1103/PhysRevA.72.063405
-
(2005)
Phys. Rev. A
, vol.72
, pp. 063405
-
-
Miyamoto, M.1
-
71
-
-
72649103622
-
-
For Im (Ea) =0, we recover the Hermitian limit of the FFA Hamiltonian. In this case a divergence of the resolvent for z→ E0, obtained from Eq. with V (E0) =0, corresponds to a bound state embedded into the continuum (see, e.g., Refs.) rather than to a spectral singularity of H.
-
For Im (Ea) =0, we recover the Hermitian limit of the FFA Hamiltonian. In this case a divergence of the resolvent for z→ E0, obtained from Eq. with V (E0) =0, corresponds to a bound state embedded into the continuum (see, e.g., Refs.) rather than to a spectral singularity of H.
-
-
-
-
72
-
-
72649099333
-
-
In fact, if z were a real-valued root of Eq. outside the interval (E1, E2), according to Eq. one would have Σ (z) =Δ (z) because V (z) =0. Hence, Σ (z) turns out to be real valued. To satisfy Eq. the condition Im (Ea) =0 must be thus satisfied. This means that a real-valued root z of Eq.necessarily requires H to be Hermitian.
-
In fact, if z were a real-valued root of Eq. outside the interval (E1, E2), according to Eq. one would have Σ (z) =Δ (z) because V (z) =0. Hence, Σ (z) turns out to be real valued. To satisfy Eq., the condition Im (Ea) =0 must be thus satisfied. This means that a real-valued root z of Eq. necessarily requires H to be Hermitian.
-
-
-
-
73
-
-
72649096602
-
-
Since the divergence of G (z) at z= E0 on the continuous spectrum occurs when z approaches E0 solely from one side (either from the top or from the bottom) of the complex plane, E0 does not belong to the point spectrum of H; rather it is a spectral singularity. In fact, if E0 were an eigenvalue of H corresponding to a square-integrable eigenfunction | E0 , denoting by | E0† the eigenfunction of the adjoint H† corresponding to the same eigenvalue and taking in Eq. |χ = | E0† and |φ = | E0 , one would obtain Gχ,φ (z) =ger; | E0 / (z- E0). Since E0† | E0 is finite, it would then follow that Gχ,φ (z) should diverge when both z= E0 +i 0+ and z= E0 -i 0+.
-
Since the divergence of G (z) at z= E0 on the continuous spectrum occurs when z approaches E0 solely from one side (either from the top or from the bottom) of the complex plane, E0 does not belong to the point spectrum of H; rather it is a spectral singularity. In fact, if E0 were an eigenvalue of H corresponding to a square-integrable eigenfunction | E0, denoting by | E0† the eigenfunction of the adjoint H† corresponding to the same eigenvalue and taking in Eq. |χ = | E0† and |φ = | E0, one would obtain Gχ,φ (z) = E0† | E0 / (z- E0). Since E0† | E0 is finite, it would then follow that Gχ,φ (z) should diverge when both z= E0 +i 0+ and z= E0 -i 0+.
-
-
-
-
74
-
-
72649104961
-
-
For a featureless continuum, for which Δ (E) and V (E) are smooth functions of E, the resonance curve has a Lorentzian shape and the quantum system, initially prepared in state |a, would decay into the continuum following a (nearly) exponential decay law with lifetime 1/ [πV (Ea)] (Weisskopf-Wigner or Breit-Wigner approximation). See also the discussion in Sec.
-
For a featureless continuum, for which Δ (E) and V (E) are smooth functions of E, the resonance curve has a Lorentzian shape and the quantum system, initially prepared in state |a, would decay into the continuum following a (nearly) exponential decay law with lifetime 1/ [πV (Ea)] (Weisskopf-Wigner or Breit-Wigner approximation). See also the discussion in Sec..
-
-
-
-
75
-
-
72649101069
-
-
We assume here that the spectrum of H is purely continuous, i.e., we assume that there are not bound states (outside or embedded in the continuum). In this case, for the Hermitian FFA model the decay of the survival probability P (t) is always complete.
-
We assume here that the spectrum of H is purely continuous, i.e., we assume that there are not bound states (outside or embedded in the continuum). In this case, for the Hermitian FFA model the decay of the survival probability P (t) is always complete.
-
-
-
-
76
-
-
72649088221
-
-
The proper determination of the square root on the right-hand side of Eq.must be chosen such that Im [Σ (z=E±i 0+)] =πV (E), according to Eq.
-
The proper determination of the square root on the right-hand side of Eq. must be chosen such that Im [Σ (z=E±i 0+)] =πV (E), according to Eq..
-
-
-
-
77
-
-
43949094193
-
-
10.1103/PhysRevB.77.195107
-
F. Dǒgan, W. Kim, C. M. Blois, and F. Marsiglio, Phys. Rev. B 77, 195107 (2008). 10.1103/PhysRevB.77.195107
-
(2008)
Phys. Rev. B
, vol.77
, pp. 195107
-
-
Dǒgan, F.1
Kim, W.2
Blois, C.M.3
Marsiglio, F.4
-
78
-
-
68649092561
-
-
10.1103/PhysRevLett.103.030402
-
O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009). 10.1103/PhysRevLett.103.030402
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 030402
-
-
Bendix, O.1
Fleischmann, R.2
Kottos, T.3
Shapiro, B.4
-
79
-
-
72649096218
-
-
More precisely, far from the lattice boundary a wave packet of the form cn (t) = □dkQ (k) exp [-ikn-iE (k) t], with spectrum Q (k) narrow at around k= k0 (0< k0 <π), propagates along the lattice with a group velocity vg =dn/dt=-2 κ0 sin k0 <0, i.e., the wave packet is incident onto the lattice boundary. Conversely, a wave packet formed by the superposition cn (t) = □dkQ (k) exp [ikn-iE (k) t], with spectrum Q (k) narrow at around k= k0, propagates along the lattice with a group velocity vg =2 κ0 sin k0 >0, i.e. it is reflected from the lattice edge.
-
More precisely, far from the lattice boundary a wave packet of the form cn (t) = □dkQ (k) exp [-ikn-iE (k) t], with spectrum Q (k) narrow at around k= k0 (0< k0 <π), propagates along the lattice with a group velocity vg =dn/dt=-2 κ0 sin k0 <0, i.e., the wave packet is incident onto the lattice boundary. Conversely, a wave packet formed by the superposition cn (t) = □dkQ (k) exp [ikn-iE (k) t], with spectrum Q (k) narrow at around k= k0, propagates along the lattice with a group velocity vg =2 κ0 sin k0 >0, i.e. it is reflected from the lattice edge.
-
-
-
-
80
-
-
72649087705
-
-
At the coalescent point, the resolvent G (z) has a second-order pole at z=0.
-
At the coalescent point, the resolvent G (z) has a second-order pole at z=0.
-
-
-
-
81
-
-
39749097413
-
-
10.1364/OL.32.002632;
-
R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632 (2007) 10.1364/OL.32.002632
-
(2007)
Opt. Lett.
, vol.32
, pp. 2632
-
-
El-Ganainy, R.1
Makris, K.G.2
Christodoulides, D.N.3
Musslimani, Z.H.4
-
82
-
-
40849137868
-
-
10.1103/PhysRevLett.100.103904;
-
K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008) 10.1103/PhysRevLett.100.103904
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 103904
-
-
Makris, K.G.1
El-Ganainy, R.2
Christodoulides, D.N.3
Musslimani, Z.H.4
-
83
-
-
69449088133
-
-
10.1103/PhysRevLett.103.093902
-
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009). 10.1103/PhysRevLett.103.093902
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 093902
-
-
Guo, A.1
Salamo, G.J.2
Duchesne, D.3
Morandotti, R.4
Volatier-Ravat, M.5
Aimez, V.6
Siviloglou, G.A.7
Christodoulides, D.N.8
|