-
4
-
-
9244221751
-
-
For an Essay on the discovery, see
-
For an Essay on the discovery, see:, Berson J A., Angew. Chem. Int. Ed. 2002 114 4849
-
(2002)
Angew. Chem. Int. Ed.
, vol.114
, pp. 4849
-
-
Berson, J.A.1
-
6
-
-
34250899206
-
Suzuki K, Takikawa H, Hachisu Y, Bode J W.
-
For recent examples, see inter alia
-
For recent examples, see inter alia:, Suzuki K, Takikawa H, Hachisu Y, Bode J W., Angew. Chem. Int. Ed. 2007 46 3252
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 3252
-
-
-
7
-
-
32244441287
-
-
Reisman S E., Ready J M., Hasuoka A, Smith C J., Wood J L., J. Am. Chem. Soc. 2006 128 1448
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 1448
-
-
Reisman, S.E.1
Ready, J.M.2
Hasuoka, A.3
Smith, C.J.4
Wood, J.L.5
-
8
-
-
35348856238
-
-
Alvarez-Manzaneda E, Chahboun R, Barranco I, Cabrera E, Alvarez E, Lara A, Alvarez-Manzaneda R, Hmamouchi M, Es-Samti H, Tetrahedron 2007 63 11943
-
(2007)
Tetrahedron
, vol.63
, pp. 11943
-
-
Alvarez-Manzaneda, E.1
Chahboun, R.2
Barranco, I.3
Cabrera, E.4
Alvarez, E.5
Lara, A.6
Alvarez-Manzaneda, R.7
Hmamouchi, M.8
Es-Samti, H.9
-
9
-
-
56849113830
-
-
Frongia A, Girard C, Ollivier J, Piras P P., Secci F, Synlett 2008 2823
-
(2008)
Synlett
, pp. 2823
-
-
Frongia, A.1
Girard, C.2
Ollivier, J.3
Piras, P.P.4
Secci, F.5
-
13
-
-
0030973259
-
-
Nakamura T, Matsui T, Tanino K, Kuwajima I, J. Org. Chem. 1997 62 3032
-
(1997)
J. Org. Chem.
, vol.62
, pp. 3032
-
-
Nakamura, T.1
Matsui, T.2
Tanino, K.3
Kuwajima, I.4
-
15
-
-
0141678121
-
-
For a review on Prins pinacol cascades, see
-
For a review on Prins pinacol cascades, see:, Overman L E., Pennington L D., J. Org. Chem. 2003 68 7143
-
(2003)
J. Org. Chem.
, vol.68
, pp. 7143
-
-
Overman, L.E.1
Pennington, L.D.2
-
18
-
-
33751151643
-
-
Mulzer J, Greifenberg S, Buschmann J, Luger P, Angew. Chem., Int. Ed. Engl. 1993 32 1173
-
(1993)
Angew. Chem., Int. Ed. Engl.
, vol.32
, pp. 1173
-
-
Mulzer, J.1
Greifenberg, S.2
Buschmann, J.3
Luger, P.4
-
20
-
-
53849089263
-
-
For a review on the use of carbophilic Lewis acids in combination with pinacol-type rearrangments, see
-
For a review on the use of carbophilic Lewis acids in combination with pinacol-type rearrangments, see:, Crone B, Kirsch S F., Chem. Eur. J. 2008 14 3514
-
(2008)
Chem. Eur. J.
, vol.14
, pp. 3514
-
-
Crone, B.1
Kirsch, S.F.2
-
21
-
-
34250333483
-
-
For our works in the field, see
-
For our works in the field, see:, Kirsch S F., Binder J T., Crone B, Duschek A, Haug T T., Liébert C, Menz H, Angew. Chem. Int. Ed. 2007 46 2310
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 2310
-
-
Kirsch S, F.1
-
22
-
-
58949094335
-
-
Menz H, Binder J T., Crone B, Duschek A, Haug T T., Kirsch S F., Klahn P, Liébert C, Tetrahedron 2009 65 1880
-
(2009)
Tetrahedron
, vol.65
, pp. 1880
-
-
Menz, H.1
Binder, J.T.2
Crone, B.3
Duschek, A.4
Haug, T.T.5
Kirsch, S.F.6
Klahn, P.7
Liébert, C.8
-
23
-
-
33748529350
-
-
Kirsch S F., Binder J T., Liébert C, Menz H, Angew. Chem. Int. Ed. 2006 45 5878
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 5878
-
-
Kirsch, S.F.1
Binder, J.T.2
Liébert, C.3
Menz, H.4
-
24
-
-
34250614357
-
-
Binder J T., Crone B, Kirsch S F., Liébert C, Menz H, Eur. J. Org. Chem. 2007 1636
-
(2007)
J. Org. Chem.
, pp. 1636
-
-
Binder, J.T.1
Crone, B.2
Kirsch, S.F.3
Liébert, C.4
Menz, H.5
-
26
-
-
57849109788
-
-
Baskar B, Bae H J., An S E., Cheong J Y., Rhee Y H., Duschek A, Kirsch S F., Org. Lett. 2008 10 2605
-
(2008)
Org. Lett.
, vol.10
, pp. 2605
-
-
Baskar, B.1
Bae, H.J.2
An, S.E.3
Cheong, J.Y.4
Rhee, Y.H.5
Duschek, A.6
Kirsch, S.F.7
-
34
-
-
0025306554
-
-
For seminal works, see
-
(a)For seminal works, see:, Ollivier J, Legros J.-Y, Fiaud J.-C, de Meijere A, Salaün J, Tetrahedron Lett. 1990 31 4135
-
(1990)
Tetrahedron Lett.
, vol.31
, pp. 4135
-
-
Ollivier, J.1
Legros, J.-Y.2
Fiaud, J.-C.3
Meijere, A.4
Salaün, J.5
-
37
-
-
0024338072
-
-
Funayama S, Eda S, Komiyama K, Ohmura S, Tokunaga T, Tetrahedron Lett. 1989 30 3151
-
(1989)
Tetrahedron Lett.
, vol.30
, pp. 3151
-
-
Funayama, S.1
Eda, S.2
Komiyama, K.3
Ohmura, S.4
Tokunaga, T.5
-
39
-
-
0034830059
-
-
For an asymmetric Wagner-Meerwein shift related to this pinacol rearrangement, see
-
For an asymmetric Wagner-Meerwein shift related to this pinacol rearrangement, see:, Trost B M., Yasukata T, J. Am. Chem. Soc. 2001 123 7162
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7162
-
-
Trost, B.M.1
Yasukata, T.2
-
41
-
-
84998955237
-
-
Saito K, Horie Y, Mukai T, Toda T, Bull. Chem. Soc. Jpn. 1985 58 3118
-
(1985)
Bull. Chem. Soc. Jpn.
, vol.58
, pp. 3118
-
-
Saito, K.1
Horie, Y.2
Mukai, T.3
Toda, T.4
-
42
-
-
72049096540
-
-
Uyehara T, Kawai Y, Yamada J.-i, Kato T, Chem Lett. 1987 16 137
-
(1987)
Chem Lett.
, vol.16
, pp. 137
-
-
Uyehara, T.1
Kawai, Y.2
Yamada, J.-I.3
Kato, T.4
-
47
-
-
33749315860
-
-
Sanz R, Martínez A, Miguel D, Álvarez-Gutiérres [nl]J M., Rodríguez F, Adv. Synth. Catal. 2006 348 1841
-
(2006)
Adv. Synth. Catal.
, vol.348
, pp. 1841
-
-
Sanz, R.1
Martínez, A.2
Miguel, D.3
Álvarez-Gutiérres, J.M.4
Rodríguez, F.5
-
48
-
-
0000310993
-
-
Lewis acid catalysis
-
Lewis acid catalysis:, Mukhopadhyay M, Reddy M M., Maikap G C., Iqbal J, J. Org. Chem. 1995 60 2670
-
(1995)
J. Org. Chem.
, vol.60
, pp. 2670
-
-
Mukhopadhyay, M.1
Reddy, M.M.2
Maikap, G.C.3
Iqbal, J.4
-
50
-
-
72049100578
-
-
Malkov A V., Baxendale I, Mansfield [nl]D J., Kocovsky P, Tetrahedron Lett. 1995 38 6351
-
(1995)
Tetrahedron Lett.
, vol.38
, pp. 6351
-
-
Malkov, A.V.1
Baxendale, I.2
Mansfield, D.J.3
Kocovsky, P.4
-
52
-
-
37349032916
-
-
Kitamura M, Hayashi H, Yano M, Tanaka T, Maezaki M, Heterocycles 2007 71 2669
-
(2007)
Heterocycles
, vol.71
, pp. 2669
-
-
Kitamura, M.1
Hayashi, H.2
Yano, M.3
Tanaka, T.4
Maezaki, M.5
-
53
-
-
66449097981
-
-
For a related case, see inter alia
-
For a related case, see inter alia:, Wang J, Huang W, Zhang Z, Xiang X, Liu R, Zhou X, J. Org. Chem. 2009 74 3299
-
(2009)
J. Org. Chem.
, vol.74
, pp. 3299
-
-
Wang, J.1
Huang, W.2
Zhang, Z.3
Xiang, X.4
Liu, R.5
Zhou, X.6
-
54
-
-
72049115961
-
-
note
-
Reaction of 1b in the presence of MgBr2 (5 mol%) led toclean formation of 4b without traces of 2b (or 3b).
-
-
-
-
55
-
-
72049098960
-
-
note
-
Synthesis of (E)-2-(4-Methoxystyryl)cyclohexanone (2b)Cu(OTf)2 (1 mg, 0.003 mmol, 1 mol%) was added to a solution of (E)-1-(4-methoxyphenyl)-3-(1- (triethylsilyloxy) cyclopentyl)prop-2-en-1-ol (1c, 100 mg, 0.28 mmol) in CH2Cl2 (2.8 mL) and stirred at r.t. for 30 min (until TLC analysis indicated complete conversion). The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 2b was obtained as acolorless solid in 96% yield (62 mg, 0.27 mmol). 1H NMR (360 MHz, CDCl3): d = 1.69-1.83 (m, 3 H), 1.89-1.96 (m, 1H), 2.01-2.09 (m, 1 H), 2.14-2.20 (m, 1 H), 2.31-2.40 (m, 1H), 2.45-2.51 (m, 1 H), 3.17 (ddd, J = 0.9, 6.4, 11.3 Hz, 1H), 3.80 (s, 3 H), 6.27 (dd, J = 5.9, 16.1 Hz, 1 H), 6.33 (d,J = 16.1 Hz, 1 H), 6.77-6.91 (m, 2 H), 7.29-7.33 (m, 2 H).13C NMR (90.6 MHz, CDCl3): d = 24.4 (t), 27.6 (t), 34.5 (t),41.7 (t), 54.0 (d), 55.3 (d), 113.9 (d), 125.3 (d), 127.4 (d),130.0 (s), 130.8 (d), 159.0 (s), 211.3 (s). LRMS (EI): m/z =230 (100)[M+], 202 (26), 173 (25), 159 (21), 134 (38), 121(37). HRMS: m/z calcd for C15H18O2 [M+]: 230.1307; found:230.1307
-
-
-
-
56
-
-
0034705473
-
-
For the construction of seven-membered ring systems through pinacol-type ring expansion, see the following review
-
For the construction of seven-membered ring systems through pinacol-type ring expansion, see the following review:, Kantorowski E J., Kurth M J., Tetrahedron 2000 56 4317
-
(2000)
Tetrahedron
, vol.56
, pp. 4317
-
-
Kantorowski, E.J.1
Kurth, M.J.2
-
57
-
-
72049091378
-
-
note
-
Synthesis of 3-Cyclohexylidene-2-(4-methoxyphenyl)-propanal (3a)Following the procedure to prepare 2b,18 allylic alcohol 1g(100 mg, 0.26 mmol) was converted into the corresponding aldehyde 3a in the presence of Cu(OTf)2 (1 mg, 1 mol%).The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica (pentanes-Et2O = 95:5). Compound 3a was obtained in 79% yield (50 mg, 0.20 mmol). 1H NMR (360 MHz, CDCl3): d = 1.45-1.59 (m, 6 H), 2.12-2.20 (m, 4 H), 3.80 (s, 3 H), 4.41 (dd, J = 2.6, 8.8 Hz, 1 H), 5.39-5.46 (m, 1 H), 6.88-6.94 (m, 2 H), 7.13-7.19 (m,2 H), 9.55 (d, J = 2.6 Hz, 1 H). 13C NMR (90.6 MHz, CDCl3): d = 26.6, 27.6, 28.5, 29.6, 37.3, 55.3, 56.3, 114.4, 115.1, 128.9, 129.4, 145.7, 158.8, 198.5. LRMS (EI): m/z =244 (2) [M+], 215 (100), 147 (23), 121 (25). HRMS: m/z calcd for C16H20O2 [M+]: 244.1463; found: 244.1468
-
-
-
-
58
-
-
72049104125
-
-
note
-
We also observed a high-yielding elimination when using 2-butene-1,4-diols that possess Bz-protected primary allylic alcohols. According to preliminary studies, this elimination appears to be quite general (Scheme 7).
-
-
-
-
59
-
-
72049126535
-
-
note
-
In seminal studies on related 1,3-isomerizations of phenylpropenyl carbinols, chirality transfer was reported
-
-
-
-
61
-
-
68049100300
-
-
Vikhe Y S., Hande S M., Kawai N, Uenishi J, J. Org. Chem. 2009 74 5174
-
(2009)
J. Org. Chem.
, vol.74
, pp. 5174
-
-
Vikhe, Y.S.1
Hande, S.M.2
Kawai, N.3
Uenishi, J.4
-
62
-
-
72049130185
-
-
note
-
This correlates with the migratory aptitude observed in Wagner-Meerwein shifts
-
-
-
|