-
3
-
-
0041878773
-
-
For reviews, see
-
For reviews, see: (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
-
(2003)
Chem. Rev.
, vol.103
, pp. 2861
-
-
Davies, H.M.L.1
Beckwith, R.E.J.2
-
5
-
-
0023262743
-
-
(a) Bettoni, G.; Loiodice, F.; Tortorella, V.; Conte-Camerino, D.; Mambrini, M.; Ferrannini, E.; Bryant, S. H. J. Med. Chem. 1987, 30, 1267.
-
(1987)
J. Med. Chem.
, vol.30
, pp. 1267
-
-
Bettoni, G.1
Loiodice, F.2
Tortorella, V.3
Conte-Camerino, D.4
Mambrini, M.5
Ferrannini, E.6
Bryant, S.H.7
-
6
-
-
0000202165
-
-
(b) Aller, E.; Brown, D. S.; Cox, G. G.; Miller, D. J.; Moody, C. J. J. Org. Chem. 1995, 60, 4449.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 4449
-
-
Aller, E.1
Brown, D.S.2
Cox, G.G.3
Miller, D.J.4
Moody, C.J.5
-
7
-
-
33644783783
-
-
(c) Chimichi, S.; Boccalini, M.; Cravotto, G.; Rosati, O. Tetrahedron Lett. 2006, 47, 2405.
-
(2006)
Tetrahedron Lett.
, vol.47
, pp. 2405
-
-
Chimichi, S.1
Boccalini, M.2
Cravotto, G.3
Rosati, O.4
-
8
-
-
0030025340
-
-
For the Rh(II)-catalyzed asymmetric insertion of R-diazoester with alcohol, no ee was observed. See
-
(a) For the Rh(II)-catalyzed asymmetric insertion of R-diazoester with alcohol, no ee was observed. See: Ferris, L.; Haigh, D.; Moody, C. J. Tetrahedron Lett. 1996, 37, 107.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 107
-
-
Ferris, L.1
Haigh, D.2
Moody, C.J.3
-
9
-
-
0000558907
-
-
For the Rh(II)-catalyzed asymmetric insertion of α-diazoester with water, the maximum ee is 8%. See
-
(b) For the Rh(II)-catalyzed asymmetric insertion of α-diazoester with water, the maximum ee is 8%. See: Bulugahapitiya, P.; Landais, Y.; Parra-Rapado, L.; Planchenault, D.; Weber, V. J. Org. Chem. 1997, 62, 1630.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 1630
-
-
Bulugahapitiya, P.1
Landais, Y.2
Parra-Rapado, L.3
Planchenault, D.4
Weber, V.5
-
10
-
-
71749107143
-
-
For a review, see Chapter 8.3.3 in ref 1a
-
(c) For a review, see Chapter 8.3.3 in ref 1a.
-
-
-
-
12
-
-
35548940365
-
-
(b) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 12616
-
-
Chen, C.1
Zhu, S.-F.2
Liu, B.3
Wang, L.-X.4
Zhou, Q.-L.5
-
13
-
-
38549171363
-
-
(c) Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 932.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 932
-
-
Zhu, S.-F.1
Chen, C.2
Cai, Y.3
Zhou, Q.-L.4
-
17
-
-
71749114403
-
-
See Chapter 8.1 in ref 1a
-
(d) See Chapter 8.1 in ref 1a.
-
-
-
-
18
-
-
12344276977
-
-
(a) Lu, C.-D.; Liu, H.; Chen, Z.-Y.; Hu, W.; Mi, A.-Q. Org. Lett. 2005, 7, 83.
-
(2005)
Org. Lett.
, vol.7
, pp. 83
-
-
Lu, C.-D.1
Liu, H.2
Chen, Z.-Y.3
Hu, W.4
Mi, A.-Q.5
-
19
-
-
34250823429
-
-
(b) Huang, H.; Guo, X.; Hu, W. Angew. Chem., Int. Ed. 2007, 46, 1337.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1337
-
-
Huang, H.1
Guo, X.2
Hu, W.3
-
20
-
-
45749136440
-
-
(c) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 7782
-
-
Hu, W.1
Xu, X.2
Zhou, J.3
Liu, W.-J.4
Huang, H.5
Hu, J.6
Yang, L.7
Gong, L.-Z.8
-
21
-
-
71749092521
-
-
note
-
2, unless otherwise specified. Computational details and references are given in the Supporting Information.
-
-
-
-
22
-
-
33947085212
-
-
Both Cu(I) and Cu(II) salts have been reported as metal-catalyst precursors in experimental studies, but the kinetic data obtained by Salomon and Kochi have demonstrated that Cu(II) can be reduced to Cu(I) by diazo compounds and that Cu(I) is a more active species than Cu(II). Therefore, Cu(I) was considered as the reactive metal catalyst in this computational study
-
Both Cu(I) and Cu(II) salts have been reported as metal-catalyst precursors in experimental studies, but the kinetic data obtained by Salomon and Kochi (Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 3300.) have demonstrated that Cu(II) can be reduced to Cu(I) by diazo compounds and that Cu(I) is a more active species than Cu(II). Therefore, Cu(I) was considered as the reactive metal catalyst in this computational study.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 3300
-
-
Salomon, R.G.1
Kochi, J.K.2
-
23
-
-
0034816899
-
-
For DFT calculations on Cu(I) carbenoid formation from α-diazocarbonyl compounds, see
-
For DFT calculations on Cu(I) carbenoid formation from α-diazocarbonyl compounds, see: (a) Fraile, J. M.; Garcia, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. J. Am. Chem. Soc. 2001, 123, 7616.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7616
-
-
Fraile, J.M.1
Garcia, J.I.2
Martinez-Merino, V.3
Mayoral, J.A.4
Salvatella, L.5
-
24
-
-
13844276012
-
-
(b) Meng, Q.; Li, M.; Tang, D.; Shen, W.; Zhang, J. THEOCHEM 2004, 711, 193.
-
(2004)
THEOCHEM
, vol.711
, pp. 193
-
-
Meng, Q.1
Li, M.2
Tang, D.3
Shen, W.4
Zhang, J.5
-
25
-
-
84961985018
-
-
For DFT calculations on Rh(II) carbenoid formation from R-diazocarbonyl compounds, see
-
For DFT calculations on Rh(II) carbenoid formation from R-diazocarbonyl compounds, see: (a) Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 7181
-
-
Nakamura, E.1
Yoshikai, N.2
Yamanaka, M.3
-
26
-
-
0346364994
-
-
(b) Nowlan, D. T.; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J. Am. Chem. Soc. 2003, 125, 15902.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 15902
-
-
Nowlan, D.T.1
Gregg, T.M.2
Davies, H.M.L.3
Singleton, D.A.4
-
27
-
-
69549122662
-
-
(c) Hansen, J.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6555.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 6555
-
-
Hansen, J.1
Autschbach, J.2
Davies, H.M.L.3
-
28
-
-
71749087104
-
-
note
-
2. However, these processes are all slightly endergonic, suggesting that the catalyst resting states shown in Figures 1 and 2 are reasonable. These computational details are given in the Supporting Information.
-
-
-
-
29
-
-
33947614581
-
-
(a) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 3470
-
-
Xia, Y.1
Liang, Y.2
Chen, Y.3
Wang, M.4
Jiao, L.5
Huang, F.6
Liu, S.7
Li, Y.8
Yu, Z.-X.9
-
30
-
-
53549109697
-
-
(b) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem. - Eur. J. 2008, 14, 4361.
-
(2008)
Chem. - Eur. J.
, vol.14
, pp. 4361
-
-
Liang, Y.1
Liu, S.2
Xia, Y.3
Li, Y.4
Yu, Z.-X.5
-
31
-
-
71749111527
-
-
note
-
2O). For details, see the Supporting Information.
-
-
-
-
32
-
-
0033518872
-
-
Another free-ylide pathway via an enol intermediate has been proposed in a Rh(II) carbenoid-initiated Claisen rearrangement. See
-
Another free-ylide pathway via an enol intermediate has been proposed in a Rh(II) carbenoid-initiated Claisen rearrangement. See: (a) Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 1748
-
-
Wood, J.L.1
Moniz, G.A.2
Pflum, D.A.3
Stoltz, B.M.4
Holubec, A.A.5
Dietrich, H.-J.6
-
33
-
-
0033549658
-
-
In this pathway, generation of the enol intermediate is easy, with an energy barrier of 12.5 kcal/mol. However, the subsequent tautomerization to the O-H insertion product 4 requires an activation free energy of 27.4 kcal/mol. Therefore, this pathway is less favorable than the water-catalyzed [1,2]-H shift pathway shown in Figure 2. For details, see the Supporting Information
-
(b) Wood, J. L.; Moniz, G. A. Org. Lett. 1999, 1, 371. In this pathway, generation of the enol intermediate is easy, with an energy barrier of 12.5 kcal/mol. However, the subsequent tautomerization to the O-H insertion product 4 requires an activation free energy of 27.4 kcal/mol. Therefore, this pathway is less favorable than the water-catalyzed [1,2]-H shift pathway shown in Figure 2. For details, see the Supporting Information.
-
(1999)
Org. Lett.
, vol.1
, pp. 371
-
-
Wood, J.L.1
Moniz, G.A.2
-
34
-
-
71749117356
-
-
note
-
The enantioselectivities of the O-H insertions using copper catalysts carrying the chiral semicorrin ligand and Pybox ligand were evaluated in ref 5. It was found that only low enantioselectivity could be achieved. These experimental findings can be rationalized by the computational results in Scheme 4. The energy differences between the FY and MY pathways are very close for Cu-semicorrin (1.5 kcal/mol; entry 2) and Cu-Pybox (-0.4 kcal/mol; entry 3), suggesting that the generation of racemic products via the FY pathway cannot be suppressed in these two systems.
-
-
-
-
35
-
-
34248531594
-
-
(a) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 5834
-
-
Liu, B.1
Zhu, S.-F.2
Zhang, W.3
Chen, C.4
Zhou, Q.-L.5
-
38
-
-
69949119129
-
-
(d) Zhang, Y.-Z.; Zhou, S.-F.; Cai, Y.; Mao, H.-X.; Zhou, Q.-L. Chem. Commun. 2009, 5362.
-
(2009)
Chem. Commun.
, pp. 5362
-
-
Zhang, Y.-Z.1
Zhou, S.-F.2
Cai, Y.3
Mao, H.-X.4
Zhou, Q.-L.5
|