-
1
-
-
0009472127
-
Accurate partial difference methods. I: Linear Cauchy problems
-
G. STRANG, Accurate partial difference methods. I: Linear Cauchy problems, Arch. Rational Mech. Anal., 12 (1963), pp. 392-402.
-
(1963)
Arch. Rational Mech. Anal.
, vol.12
, pp. 392-402
-
-
Strang, G.1
-
2
-
-
0001518684
-
On the construction and comparison of difference schemes
-
_, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), pp. 506-517.
-
(1968)
SIAM J. Numer. Anal.
, vol.5
, pp. 506-517
-
-
-
3
-
-
0346231187
-
Difference schemes with a "disintegrating" operator for multidimensional problems
-
E. G. D'YAKONOV, Difference schemes with a "disintegrating" operator for multidimensional problems, USSR Comp. Math., 2 (1963), pp. 581-607.
-
(1963)
USSR Comp. Math.
, vol.2
, pp. 581-607
-
-
D'Yakonov, E.G.1
-
4
-
-
0039208379
-
Third order difference methods for hyperbolic equations
-
S. Z. BURSTEIN AND A. A. MIRIN, Third order difference methods for hyperbolic equations, J. Comput. Phys., 5 (1970), pp. 547-571.
-
(1970)
J. Comput. Phys.
, vol.5
, pp. 547-571
-
-
Burstein, S.Z.1
Mirin, A.A.2
-
5
-
-
0022738251
-
Split-step methods for the solution of the nonlinear Schrodinger equation
-
J. A. C. WEIDEMAN AND B. M. HERBST, Split-step methods for the solution of the nonlinear Schrodinger equation, SIAM J. Numer. Anal., 23 (1986), pp. 485-507.
-
(1986)
SIAM J. Numer. Anal.
, vol.23
, pp. 485-507
-
-
Weideman, J.A.C.1
Herbst, B.M.2
-
6
-
-
48549114390
-
Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrodinger equation
-
T. R. TAHA AND M. J. ABLOWITZ, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrodinger equation, J. Comput. Phys., 55 (1984), pp. 203-230.
-
(1984)
J. Comput. Phys.
, vol.55
, pp. 203-230
-
-
Taha, T.R.1
Ablowitz, M.J.2
-
7
-
-
0028766065
-
Symplectic methods for the nonlinear Schrodinger equation
-
B. M. HERBST, F. VARADI, AND M. J. ABLOWITZ, Symplectic methods for the nonlinear Schrodinger equation, Math. Comput. Simulation, 37 (1994), pp. 353-369.
-
(1994)
Math. Comput. Simulation
, vol.37
, pp. 353-369
-
-
Herbst, B.M.1
Varadi, F.2
Ablowitz, M.J.3
-
8
-
-
0642313434
-
Slowly varying fully nonlinear wavetrains in the Ginzburg-Landau equation
-
A. J. BERNOFF, Slowly varying fully nonlinear wavetrains in the Ginzburg-Landau equation, Phys. D, 30 (1988), pp. 363-381.
-
(1988)
Phys. D
, vol.30
, pp. 363-381
-
-
Bernoff, A.J.1
-
9
-
-
0039071563
-
A novel method for simulating the complex Ginzburg-Landau equation
-
D. GOLDMAN AND L. SIROVICH, A novel method for simulating the complex Ginzburg-Landau equation, Quart. Appl. Math., 53 (1995), pp. 315-333.
-
(1995)
Quart. Appl. Math.
, vol.53
, pp. 315-333
-
-
Goldman, D.1
Sirovich, L.2
-
10
-
-
0002572341
-
The one-dimensional complex Ginzburg-Landau equation in the low dissipation limit
-
_, The one-dimensional complex Ginzburg-Landau equation in the low dissipation limit, Nonlinearity, 7 (1994), pp. 417-439.
-
(1994)
Nonlinearity
, vol.7
, pp. 417-439
-
-
-
11
-
-
0346653215
-
The accuracy of symplectic integrators
-
R. I. MCLACHLAN AND P. ATELA, The accuracy of symplectic integrators, Nonlinearity, 5 (1992), pp. 541-562.
-
(1992)
Nonlinearity
, vol.5
, pp. 541-562
-
-
Mclachlan, R.I.1
Atela, P.2
-
12
-
-
0013403652
-
Solving linear partial differentia/equations by exponential splitting
-
Q. SHENG, Solving linear partial differentia/equations by exponential splitting, IMA J. Numer. Anal., 9 (1989), pp. 199-212.
-
(1989)
IMA J. Numer. Anal.
, vol.9
, pp. 199-212
-
-
Sheng, Q.1
-
13
-
-
4244036883
-
Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations
-
M. SUZUKI, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A, 146 (1990), pp. 319-323.
-
(1990)
Phys. Lett. A
, vol.146
, pp. 319-323
-
-
Suzuki, M.1
-
14
-
-
0001753297
-
General theory of fractal path integrals with applications to many-body theories and statistical physics
-
_, General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys., 32 (1991), pp. 400-407.
-
(1991)
J. Math. Phys.
, vol.32
, pp. 400-407
-
-
-
15
-
-
84966238639
-
Numerical methods based on additive splittings for hyperbolic partial differential equations
-
R. J. LEVEQUE AND J. OLIGER, Numerical methods based on additive splittings for hyperbolic partial differential equations, Math. Comp., 40 (1983), pp. 469-497.
-
(1983)
Math. Comp.
, vol.40
, pp. 469-497
-
-
Leveque, R.J.1
Oliger, J.2
-
16
-
-
1542431177
-
Rational approximants and numerical methods for initial-value problems
-
A. ISERLES, Rational approximants and numerical methods for initial-value problems, Phys. D, 60 (1992), pp. 280-292.
-
(1992)
Phys. D
, vol.60
, pp. 280-292
-
-
Iserles, A.1
-
17
-
-
0020798563
-
A canonical integration technique
-
R. D. RUTH, A canonical integration technique, IEEE Trans. Nucl. Sci., NS-30 (1983), pp. 2669-2771.
-
(1983)
IEEE Trans. Nucl. Sci.
, vol.NS-30
, pp. 2669-2771
-
-
Ruth, R.D.1
-
18
-
-
33646388286
-
Fourth-order symptectic integration
-
E. FOREST AND R. D. RUTH, Fourth-order symptectic integration, Phys. D, 43 (1990), pp. 105-117.
-
(1990)
Phys. D
, vol.43
, pp. 105-117
-
-
Forest, E.1
Ruth, R.D.2
-
19
-
-
85033741950
-
-
Tech. report, LAUR No. 93-2781, Los Alamos National Laboratory, Los Alamos, NM
-
D. GOLDMAN AND T. J. KAPER, Third-order operator splitting schemes and nonreversible systems, Tech. report, LAUR No. 93-2781, Los Alamos National Laboratory, Los Alamos, NM, 1993.
-
(1993)
Third-order Operator Splitting Schemes and Nonreversible Systems
-
-
Goldman, D.1
Kaper, T.J.2
|