메뉴 건너뛰기




Volumn , Issue , 2009, Pages 213-220

Patient stratification with competing risks by multivariate Fisher distance

Author keywords

[No Author keywords available]

Indexed keywords

AFFINE SPACE; AFFINE TRANSFORMATIONS; ARTIFICIAL NEURAL NETWORK; AUTOMATIC RELEVANCE DETERMINATION; CLUSTER NUMBER ESTIMATION; COMPETING RISKS; DATA SPACE; EVENT MODEL; FISHER DISTANCE; INDUCTION THERAPY; INPUT DATAS; MORTALITY RISK; SEMI-SUPERVISED; SURVIVAL MODEL;

EID: 70449394813     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5179077     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 2
    • 0035392549 scopus 로고    scopus 로고
    • Bankruptcy analysis with self-organizing maps in learning metrics
    • Jul
    • S. Kaski, J. Sinkkonen, and J. Peltonen, "Bankruptcy analysis with self-organizing maps in learning metrics, " Neural Networks, IEEE Transactions on, vol. 12, no. 4, pp. 936-947, Jul. 2001.
    • (2001) Neural Networks, IEEE Transactions on , vol.12 , Issue.4 , pp. 936-947
    • Kaski, S.1    Sinkkonen, J.2    Peltonen, J.3
  • 3
    • 85182301319 scopus 로고    scopus 로고
    • P. Lisboa, I. H. Jarman, T. A. Etchells, F. Ambrogi, I. Ardoino, M. Vignetti, and E. Biganzoli, Short-term time-to-event model of response to treatment following a gimema protocol for acute myeloid leukaemia, in Computational Intelligence and Bio engineering, Workshop in honour of Antonina Starita, ser. Frontiers in Artificial Intelligence and Applications, F. Masulli, A. Micheli, and A. Sperduti, Eds. IOS Press, 2009 (To Appear).
    • P. Lisboa, I. H. Jarman, T. A. Etchells, F. Ambrogi, I. Ardoino, M. Vignetti, and E. Biganzoli, "Short-term time-to-event model of response to treatment following a gimema protocol for acute myeloid leukaemia, " in "Computational Intelligence and Bio engineering", Workshop in honour of Antonina Starita, ser. Frontiers in Artificial Intelligence and Applications, F. Masulli, A. Micheli, and A. Sperduti, Eds. IOS Press, 2009 (To Appear).
  • 4
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • E. Biganzoli, P. Boracchi, and E. Marubini, "A general framework for neural network models on censored survival data, " Neural Netw., vol. 15, no. 2, pp. 209-218, 2002.
    • (2002) Neural Netw , vol.15 , Issue.2 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 5
    • 33744547243 scopus 로고    scopus 로고
    • Artificial neural network for the joint modelling of discrete cause-specific hazards
    • June
    • E. Biganzoli, P. Boracchi, , and F. A. E. Marubini, "Artificial neural network for the joint modelling of discrete cause-specific hazards, " Artif lntell Med, vol. 37, no. 2, pp. 119-130, June 2006.
    • (2006) Artif lntell Med , vol.37 , Issue.2 , pp. 119-130
    • Biganzoli, E.1    Boracchi, P.2    Marubini, F.A.E.3
  • 7
    • 63249127387 scopus 로고    scopus 로고
    • Estimates of clinically useful measures in competing risks survival analysis
    • F. Ambrogi, E. Biganzoli, and P. Boracchi, "Estimates of clinically useful measures in competing risks survival analysis, " Statistics in Medicine, vol. 27, no. 30, pp. 6407-6425, 2008.
    • (2008) Statistics in Medicine , vol.27 , Issue.30 , pp. 6407-6425
    • Ambrogi, F.1    Biganzoli, E.2    Boracchi, P.3
  • 8
    • 56449089158 scopus 로고    scopus 로고
    • Competitive repetition suppression (CoRe) clustering: A biologically inspired learning model with application to robust clustering
    • Nov
    • D. Bacciu and A. Starita, "Competitive repetition suppression (CoRe) clustering: A biologically inspired learning model with application to robust clustering, " Neural Networks, IEEE Transactions on, vol. 19, no. 11, pp. 1922-1941, Nov. 2008.
    • (2008) Neural Networks, IEEE Transactions on , vol.19 , Issue.11 , pp. 1922-1941
    • Bacciu, D.1    Starita, A.2
  • 10
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay, "The evidence framework applied to classification networks, " Neural Comput. , vol. 4, no. 5, pp. 720-736, 1992.
    • (1992) Neural Comput , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 11
    • 0038162240 scopus 로고    scopus 로고
    • A bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • May
    • P. J. Lisboa, H. Wong, P. Harris, and R. Swindell, "A bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer." Artif Intell Med, vol. 28, no. 1, pp. 1-25, May 2003.
    • (2003) Artif Intell Med , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 12
    • 3543145375 scopus 로고    scopus 로고
    • Principle of learning metrics for exploratory data analysis
    • S. Kaski and J. Sinkkonen, "Principle of learning metrics for exploratory data analysis, " J. VLSI Signal Process. Syst., vol. 37, no. 2-3, pp. 177-188, 2004.
    • (2004) J. VLSI Signal Process. Syst , vol.37 , Issue.2-3 , pp. 177-188
    • Kaski, S.1    Sinkkonen, J.2
  • 13
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and T. Villmann, "Generalized relevance learning vector quantization, " Neural Netw., vol. 15, no. 8-9, pp. 1059-1068, 2002.
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 14
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-I. Amari, "Natural gradient works efficiently in learning, " Neural Comput. , vol. 10, no. 2, pp. 251-276, 1998.
    • (1998) Neural Comput , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.