메뉴 건너뛰기




Volumn 27, Issue 30, 2008, Pages 6407-6425

Estimates of clinically useful measures in competing risks survival analysis

Author keywords

Clinically useful measures; Competing risks; Generalized estimating equations; Pseudo values

Indexed keywords

DIETHYLSTILBESTROL; ESTROGEN;

EID: 63249127387     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3455     Document Type: Article
Times cited : (29)

References (43)
  • 1
    • 0022681316 scopus 로고
    • Treatment effects in competing-risks analysis of prostate cancer
    • Kay R. Treatment effects in competing-risks analysis of prostate cancer. Biometrics 1986; 42:203-211.
    • (1986) Biometrics , vol.42 , pp. 203-211
    • Kay, R.1
  • 2
    • 33644764720 scopus 로고    scopus 로고
    • Modelling competing risks in cancer studies
    • Klein JP. Modelling competing risks in cancer studies. Statistics in Medicine 2006; 25:1015-1034.
    • (2006) Statistics in Medicine , vol.25 , pp. 1015-1034
    • Klein, J.P.1
  • 3
    • 33749077932 scopus 로고    scopus 로고
    • Allometric scaling law questions the traditional mechanical model for axillary lymph node involvement in breast cancer
    • Demicheli R, Biganzoli E, Boracchi P, Greco M, Hrushesky WJ, Retsky MW. Allometric scaling law questions the traditional mechanical model for axillary lymph node involvement in breast cancer. Journal of Clinical Oncology 2006; 27:4391-4396.
    • (2006) Journal of Clinical Oncology , vol.27 , pp. 4391-4396
    • Demicheli, R.1    Biganzoli, E.2    Boracchi, P.3    Greco, M.4    Hrushesky, W.J.5    Retsky, M.W.6
  • 4
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 1999; 94:496-509.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2
  • 5
    • 33845806063 scopus 로고    scopus 로고
    • A flexible semiparametric transformation model for survival data
    • Scheike T. A flexible semiparametric transformation model for survival data. Lifetime Data Analysis 2006; 12:461-480.
    • (2006) Lifetime Data Analysis , vol.12 , pp. 461-480
    • Scheike, T.1
  • 6
    • 84877810462 scopus 로고    scopus 로고
    • cmprsk: Subdistribution Analysis of Competing Risks, 2004, r package version 2.1-5
    • Gray RJ. cmprsk: Subdistribution Analysis of Competing Risks, 2004. Available from: http://biowww.dfci. harvard.edu/~gray, r package version 2.1-5.
    • Gray, R.J.1
  • 7
    • 0033476978 scopus 로고    scopus 로고
    • Analysing competing risks data with transformation models
    • Fine JP. Analysing competing risks data with transformation models. Journal of the Royal Statistical Society, Series B 1999; 61(4):817-830.
    • (1999) Journal of the Royal Statistical Society , vol.61 , Issue.4 , pp. 817-830
    • Fine, J.P.1
  • 8
    • 0009087137 scopus 로고    scopus 로고
    • Regression modeling of competing crude failure probabilities
    • Fine JP. Regression modeling of competing crude failure probabilities. Biostatistics 2001; 2:85-97.
    • (2001) Biostatistics , vol.2 , pp. 85-97
    • Fine, J.P.1
  • 9
    • 15044348009 scopus 로고    scopus 로고
    • Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
    • Klein JP, Andersen PK. Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 2005; 61:223-229.
    • (2005) Biometrics , vol.61 , pp. 223-229
    • Klein, J.P.1    Andersen, P.K.2
  • 10
    • 40249109994 scopus 로고    scopus 로고
    • Predicting cumulative incidence probability by direct binomial regression
    • Scheike TH, Zhang MJ, Gerds TA. Predicting cumulative incidence probability by direct binomial regression. Biometrika 2008; 95:205-220.
    • (2008) Biometrika , vol.95 , pp. 205-220
    • Scheike, T.H.1    Zhang, M.J.2    Gerds, T.A.3
  • 11
  • 12
    • 0025000683 scopus 로고
    • Clinically useful measures to assess the effectiveness of treatments: hints for a proper choice with special emphasis on cancer research
    • Boracchi P, Mezzanotte G, Mariani L, Valagussa P, Marubini E. Clinically useful measures to assess the effectiveness of treatments: hints for a proper choice with special emphasis on cancer research. Tumori 1990; 76:1-9.
    • (1990) Tumori , vol.76 , pp. 1-9
    • Boracchi, P.1    Mezzanotte, G.2    Mariani, L.3    Valagussa, P.4    Marubini, E.5
  • 14
    • 0035319972 scopus 로고    scopus 로고
    • Clinically useful measures of the effects of treatment
    • DiCenso A. Clinically useful measures of the effects of treatment. Evidence Based Nursing 2001; 4:36-39.
    • (2001) Evidence Based Nursing , vol.4 , pp. 36-39
    • DiCenso, A.1
  • 15
    • 0036073237 scopus 로고    scopus 로고
    • Interpreting measures of treatment effect in cancer clinical trials
    • Case LD, Kimmick G, Paskett ED, Lohman K, Tucker R. Interpreting measures of treatment effect in cancer clinical trials. Oncologist 2002; 7:181-187.
    • (2002) Oncologist , vol.7 , pp. 181-187
    • Case, L.D.1    Kimmick, G.2    Paskett, E.D.3    Lohman, K.4    Tucker, R.5
  • 16
    • 0022629577 scopus 로고
    • Binomial regression in glim: estimating risk ratios and risk differences
    • Wacholder S. Binomial regression in glim: estimating risk ratios and risk differences. American Journal of Epidemiology 1986; 123:174-184.
    • (1986) American Journal of Epidemiology , vol.123 , pp. 174-184
    • Wacholder, S.1
  • 17
    • 85024991462 scopus 로고    scopus 로고
    • Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
    • Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Medical Research Methodology 2003; 21:203.
    • (2003) BMC Medical Research Methodology , vol.21 , pp. 203
    • Barros, A.J.1    Hirakata, V.N.2
  • 18
    • 0037541565 scopus 로고    scopus 로고
    • Estimating the relative risk in cohort studies and clinical trials of common outcome
    • McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcome. American Journal of Epidemiology 2003; 157:940-943.
    • (2003) American Journal of Epidemiology , vol.157 , pp. 940-943
    • McNutt, L.A.1    Wu, C.2    Xue, X.3    Hafner, J.P.4
  • 19
    • 24144458327 scopus 로고    scopus 로고
    • Easy SAS calculations for risk or prevalence ratios and differences
    • Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. American Journal of Epidemiology 2005; 162:199-200.
    • (2005) American Journal of Epidemiology , vol.162 , pp. 199-200
    • Spiegelman, D.1    Hertzmark, E.2
  • 20
    • 47949131398 scopus 로고    scopus 로고
    • Relative risk regression in medical research: models, contrasts, estimators and algorithms
    • UW Biostatistics Working Papers
    • Lumley T, Kronmal R, Ma S. Relative risk regression in medical research: models, contrasts, estimators and algorithms. UW Biostatistics Working Papers, 2006. Available from: http://www.bepress.com.
    • (2006)
    • Lumley, T.1    Kronmal, R.2    Ma, S.3
  • 21
    • 3843072366 scopus 로고    scopus 로고
    • Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies
    • Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. American Journal of Epidemiology 2004; 160:301-305.
    • (2004) American Journal of Epidemiology , vol.160 , pp. 301-305
    • Greenland, S.1
  • 23
    • 27644559962 scopus 로고    scopus 로고
    • R Development Core Team
    • R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. Available from: URL http://www.R-project.org.
    • (2008)
  • 24
    • 0019216788 scopus 로고
    • The choice of treatment for cancer patients based on covariate information: application to prostate cancer
    • Byar DP, Green SB. The choice of treatment for cancer patients based on covariate information: application to prostate cancer. Bulletin du Cancer 1980; 67:477-490.
    • (1980) Bulletin du Cancer , vol.67 , pp. 477-490
    • Byar, D.P.1    Green, S.B.2
  • 26
    • 0033266724 scopus 로고    scopus 로고
    • The concept of attributable risk in epidemiological practice
    • Uter W, Pfahlberg A. The concept of attributable risk in epidemiological practice. Biometrical Journal 1999; 8:985-993.
    • (1999) Biometrical Journal , vol.8 , pp. 985-993
    • Uter, W.1    Pfahlberg, A.2
  • 27
    • 0000120995 scopus 로고
    • A class of k-sample tests for comparing the cumulative incidence of a competing risk
    • Gray RJ. A class of k-sample tests for comparing the cumulative incidence of a competing risk. Annals of Statistics 1988; 16:1141-1154.
    • (1988) Annals of Statistics , vol.16 , pp. 1141-1154
    • Gray, R.J.1
  • 28
    • 77956889312 scopus 로고
    • Analysis of transformation models with censored data
    • Cheng S, Wei L, Ying Z. Analysis of transformation models with censored data. Biometrika 1995; 82:835-845.
    • (1995) Biometrika , vol.82 , pp. 835-845
    • Cheng, S.1    Wei, L.2    Ying, Z.3
  • 29
    • 0031898029 scopus 로고    scopus 로고
    • Prediction of cumulative incidence function under the proportional hazards model
    • Cheng SC, Fine JP, Wei LJ. Prediction of cumulative incidence function under the proportional hazards model. Biometrics 1998; 54:219-228.
    • (1998) Biometrics , vol.54 , pp. 219-228
    • Cheng, S.C.1    Fine, J.P.2    Wei, L.J.3
  • 30
    • 3843116423 scopus 로고    scopus 로고
    • Generalized linear models for correlated pseudo-observations, with applications to multi-state models
    • Andersen PK, Klein JP, Rosthøj S. Generalized linear models for correlated pseudo-observations, with applications to multi-state models. Biometrika 2003; 90:15-27.
    • (2003) Biometrika , vol.90 , pp. 15-27
    • Andersen, P.K.1    Klein, J.P.2    Rosthøj, S.3
  • 32
    • 0032494717 scopus 로고    scopus 로고
    • Confidence intervals for the number needed to treat
    • Altman DG. Confidence intervals for the number needed to treat. British Medical Journal 1998; 317:1309-1312.
    • (1998) British Medical Journal , vol.317 , pp. 1309-1312
    • Altman, D.G.1
  • 33
    • 0034354086 scopus 로고    scopus 로고
    • Number needed to treat: properties and problems
    • Hutton JL. Number needed to treat: properties and problems. Journal of the Royal Statistical Society, Series A 2000; 163:381-402.
    • (2000) Journal of the Royal Statistical Society , vol.163 , pp. 381-402
    • Hutton, J.L.1
  • 34
    • 0035074086 scopus 로고    scopus 로고
    • Calculating confidence intervals for the number needed to treat
    • Bender R. Calculating confidence intervals for the number needed to treat. Controlled Clinical Trials 2001; 22:102-110.
    • (2001) Controlled Clinical Trials , vol.22 , pp. 102-110
    • Bender, R.1
  • 35
    • 45949100320 scopus 로고    scopus 로고
    • r package version 3.1-2, with contributions from many other users.
    • Harrell FJ. Hmisc: Harrell Miscellaneous, 2006. Available from: http://biostat.mc.vanderbilt.edu/s/Hmisc, r package version 3.1-2, with contributions from many other users.
    • (2006) Hmisc: Harrell Miscellaneous
    • Harrell, F.J.1
  • 36
    • 45749101531 scopus 로고    scopus 로고
    • r package version 2.1-1
    • Harrell FJ. Design: Design Package, 2007. Available from: http://biostat.mc.vanderbilt.edu/s/Design http://biostat. mc. vanderbilt.edu/rms, r package version 2.1-1.
    • (2007) Design: Design Package
    • Harrell, F.J.1
  • 37
    • 29844439660 scopus 로고    scopus 로고
    • R package version 4.13-11, ported to R by Thomas Lumley (versions 3.13 and 4.4) and Brian Ripley (version 4.13).
    • Carey VJ. gee: Generalized Estimation Equation Solver, 2006. R package version 4.13-11, ported to R by Thomas Lumley (versions 3.13 and 4.4) and Brian Ripley (version 4.13).
    • (2006) gee: Generalized Estimation Equation Solver
    • Carey, V.J.1
  • 38
    • 84877830677 scopus 로고    scopus 로고
    • CA. Absolute numbers best for discussing treatment options.
    • CA. Absolute numbers best for discussing treatment options. CA: A Cancer Journal for Clinicians 2004; 54:123-124.
    • (2004) CA: A Cancer Journal for Clinicians , vol.54 , pp. 123-124
  • 39
    • 0642307262 scopus 로고    scopus 로고
    • Is relative risk reduction a useful measure for patients or families who must choose a method of treatment?
    • Wieand HS. Is relative risk reduction a useful measure for patients or families who must choose a method of treatment? Journal of Clinical Oncology 2003; 21:4263-4264.
    • (2003) Journal of Clinical Oncology , vol.21 , pp. 4263-4264
    • Wieand, H.S.1
  • 40
    • 33745652295 scopus 로고    scopus 로고
    • End points in clinical trials: are they moving the goalposts?
    • Leung DY, French JK. End points in clinical trials: are they moving the goalposts? Heart 2006; 92:870-872.
    • (2006) Heart , vol.92 , pp. 870-872
    • Leung, D.Y.1    French, J.K.2
  • 41
    • 0033524123 scopus 로고    scopus 로고
    • Calculating the number needed to treat for trials where the outcome is time to an event
    • Altman DG, Andersen PK. Calculating the number needed to treat for trials where the outcome is time to an event. British Medical Journal 1999; 319:1492-1495.
    • (1999) British Medical Journal , vol.319 , pp. 1492-1495
    • Altman, D.G.1    Andersen, P.K.2
  • 42
    • 16844380315 scopus 로고    scopus 로고
    • A comparison of goodness of fit tests for the logistic gee model
    • Evans SR, Li L. A comparison of goodness of fit tests for the logistic gee model. Statistics in Medicine 2005; 24:1245-1261.
    • (2005) Statistics in Medicine , vol.24 , pp. 1245-1261
    • Evans, S.R.1    Li, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.