-
1
-
-
0022681316
-
Treatment effects in competing-risks analysis of prostate cancer
-
Kay R. Treatment effects in competing-risks analysis of prostate cancer. Biometrics 1986; 42:203-211.
-
(1986)
Biometrics
, vol.42
, pp. 203-211
-
-
Kay, R.1
-
2
-
-
33644764720
-
Modelling competing risks in cancer studies
-
Klein JP. Modelling competing risks in cancer studies. Statistics in Medicine 2006; 25:1015-1034.
-
(2006)
Statistics in Medicine
, vol.25
, pp. 1015-1034
-
-
Klein, J.P.1
-
3
-
-
33749077932
-
Allometric scaling law questions the traditional mechanical model for axillary lymph node involvement in breast cancer
-
Demicheli R, Biganzoli E, Boracchi P, Greco M, Hrushesky WJ, Retsky MW. Allometric scaling law questions the traditional mechanical model for axillary lymph node involvement in breast cancer. Journal of Clinical Oncology 2006; 27:4391-4396.
-
(2006)
Journal of Clinical Oncology
, vol.27
, pp. 4391-4396
-
-
Demicheli, R.1
Biganzoli, E.2
Boracchi, P.3
Greco, M.4
Hrushesky, W.J.5
Retsky, M.W.6
-
5
-
-
33845806063
-
A flexible semiparametric transformation model for survival data
-
Scheike T. A flexible semiparametric transformation model for survival data. Lifetime Data Analysis 2006; 12:461-480.
-
(2006)
Lifetime Data Analysis
, vol.12
, pp. 461-480
-
-
Scheike, T.1
-
6
-
-
84877810462
-
-
cmprsk: Subdistribution Analysis of Competing Risks, 2004, r package version 2.1-5
-
Gray RJ. cmprsk: Subdistribution Analysis of Competing Risks, 2004. Available from: http://biowww.dfci. harvard.edu/~gray, r package version 2.1-5.
-
-
-
Gray, R.J.1
-
7
-
-
0033476978
-
Analysing competing risks data with transformation models
-
Fine JP. Analysing competing risks data with transformation models. Journal of the Royal Statistical Society, Series B 1999; 61(4):817-830.
-
(1999)
Journal of the Royal Statistical Society
, vol.61
, Issue.4
, pp. 817-830
-
-
Fine, J.P.1
-
8
-
-
0009087137
-
Regression modeling of competing crude failure probabilities
-
Fine JP. Regression modeling of competing crude failure probabilities. Biostatistics 2001; 2:85-97.
-
(2001)
Biostatistics
, vol.2
, pp. 85-97
-
-
Fine, J.P.1
-
9
-
-
15044348009
-
Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
-
Klein JP, Andersen PK. Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 2005; 61:223-229.
-
(2005)
Biometrics
, vol.61
, pp. 223-229
-
-
Klein, J.P.1
Andersen, P.K.2
-
10
-
-
40249109994
-
Predicting cumulative incidence probability by direct binomial regression
-
Scheike TH, Zhang MJ, Gerds TA. Predicting cumulative incidence probability by direct binomial regression. Biometrika 2008; 95:205-220.
-
(2008)
Biometrika
, vol.95
, pp. 205-220
-
-
Scheike, T.H.1
Zhang, M.J.2
Gerds, T.A.3
-
12
-
-
0025000683
-
Clinically useful measures to assess the effectiveness of treatments: hints for a proper choice with special emphasis on cancer research
-
Boracchi P, Mezzanotte G, Mariani L, Valagussa P, Marubini E. Clinically useful measures to assess the effectiveness of treatments: hints for a proper choice with special emphasis on cancer research. Tumori 1990; 76:1-9.
-
(1990)
Tumori
, vol.76
, pp. 1-9
-
-
Boracchi, P.1
Mezzanotte, G.2
Mariani, L.3
Valagussa, P.4
Marubini, E.5
-
13
-
-
0028903054
-
Basic statistics for clinicians: 3. Assessing the effects of treatment: measures of association
-
Jaeschke R, Guyatt G, Shannon H, Walter S, Cook D, Heddle N. Basic statistics for clinicians: 3. Assessing the effects of treatment: measures of association. Canadian Medical Association Journal 1995; 152:351-357.
-
(1995)
Canadian Medical Association Journal
, vol.152
, pp. 351-357
-
-
Jaeschke, R.1
Guyatt, G.2
Shannon, H.3
Walter, S.4
Cook, D.5
Heddle, N.6
-
14
-
-
0035319972
-
Clinically useful measures of the effects of treatment
-
DiCenso A. Clinically useful measures of the effects of treatment. Evidence Based Nursing 2001; 4:36-39.
-
(2001)
Evidence Based Nursing
, vol.4
, pp. 36-39
-
-
DiCenso, A.1
-
15
-
-
0036073237
-
Interpreting measures of treatment effect in cancer clinical trials
-
Case LD, Kimmick G, Paskett ED, Lohman K, Tucker R. Interpreting measures of treatment effect in cancer clinical trials. Oncologist 2002; 7:181-187.
-
(2002)
Oncologist
, vol.7
, pp. 181-187
-
-
Case, L.D.1
Kimmick, G.2
Paskett, E.D.3
Lohman, K.4
Tucker, R.5
-
16
-
-
0022629577
-
Binomial regression in glim: estimating risk ratios and risk differences
-
Wacholder S. Binomial regression in glim: estimating risk ratios and risk differences. American Journal of Epidemiology 1986; 123:174-184.
-
(1986)
American Journal of Epidemiology
, vol.123
, pp. 174-184
-
-
Wacholder, S.1
-
17
-
-
85024991462
-
Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
-
Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Medical Research Methodology 2003; 21:203.
-
(2003)
BMC Medical Research Methodology
, vol.21
, pp. 203
-
-
Barros, A.J.1
Hirakata, V.N.2
-
18
-
-
0037541565
-
Estimating the relative risk in cohort studies and clinical trials of common outcome
-
McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcome. American Journal of Epidemiology 2003; 157:940-943.
-
(2003)
American Journal of Epidemiology
, vol.157
, pp. 940-943
-
-
McNutt, L.A.1
Wu, C.2
Xue, X.3
Hafner, J.P.4
-
19
-
-
24144458327
-
Easy SAS calculations for risk or prevalence ratios and differences
-
Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. American Journal of Epidemiology 2005; 162:199-200.
-
(2005)
American Journal of Epidemiology
, vol.162
, pp. 199-200
-
-
Spiegelman, D.1
Hertzmark, E.2
-
20
-
-
47949131398
-
Relative risk regression in medical research: models, contrasts, estimators and algorithms
-
UW Biostatistics Working Papers
-
Lumley T, Kronmal R, Ma S. Relative risk regression in medical research: models, contrasts, estimators and algorithms. UW Biostatistics Working Papers, 2006. Available from: http://www.bepress.com.
-
(2006)
-
-
Lumley, T.1
Kronmal, R.2
Ma, S.3
-
21
-
-
3843072366
-
Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies
-
Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. American Journal of Epidemiology 2004; 160:301-305.
-
(2004)
American Journal of Epidemiology
, vol.160
, pp. 301-305
-
-
Greenland, S.1
-
23
-
-
27644559962
-
R Development Core Team
-
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. Available from: URL http://www.R-project.org.
-
(2008)
-
-
-
24
-
-
0019216788
-
The choice of treatment for cancer patients based on covariate information: application to prostate cancer
-
Byar DP, Green SB. The choice of treatment for cancer patients based on covariate information: application to prostate cancer. Bulletin du Cancer 1980; 67:477-490.
-
(1980)
Bulletin du Cancer
, vol.67
, pp. 477-490
-
-
Byar, D.P.1
Green, S.B.2
-
25
-
-
33845347364
-
Axillary lymph node nanometastases are prognostic factors for disease-free survival and metastatic relapse in breast cancer patients
-
Querzoli P, Pedriali M, Rinaldi R, Lombardi A, Biganzoli E, Boracchi P, Ferretti S, Frasson C, Zanella C, Ghisellini S. Axillary lymph node nanometastases are prognostic factors for disease-free survival and metastatic relapse in breast cancer patients. Clinical Cancer Research 2006; 12:6696-6701.
-
(2006)
Clinical Cancer Research
, vol.12
, pp. 6696-6701
-
-
Querzoli, P.1
Pedriali, M.2
Rinaldi, R.3
Lombardi, A.4
Biganzoli, E.5
Boracchi, P.6
Ferretti, S.7
Frasson, C.8
Zanella, C.9
Ghisellini, S.10
-
26
-
-
0033266724
-
The concept of attributable risk in epidemiological practice
-
Uter W, Pfahlberg A. The concept of attributable risk in epidemiological practice. Biometrical Journal 1999; 8:985-993.
-
(1999)
Biometrical Journal
, vol.8
, pp. 985-993
-
-
Uter, W.1
Pfahlberg, A.2
-
27
-
-
0000120995
-
A class of k-sample tests for comparing the cumulative incidence of a competing risk
-
Gray RJ. A class of k-sample tests for comparing the cumulative incidence of a competing risk. Annals of Statistics 1988; 16:1141-1154.
-
(1988)
Annals of Statistics
, vol.16
, pp. 1141-1154
-
-
Gray, R.J.1
-
28
-
-
77956889312
-
Analysis of transformation models with censored data
-
Cheng S, Wei L, Ying Z. Analysis of transformation models with censored data. Biometrika 1995; 82:835-845.
-
(1995)
Biometrika
, vol.82
, pp. 835-845
-
-
Cheng, S.1
Wei, L.2
Ying, Z.3
-
29
-
-
0031898029
-
Prediction of cumulative incidence function under the proportional hazards model
-
Cheng SC, Fine JP, Wei LJ. Prediction of cumulative incidence function under the proportional hazards model. Biometrics 1998; 54:219-228.
-
(1998)
Biometrics
, vol.54
, pp. 219-228
-
-
Cheng, S.C.1
Fine, J.P.2
Wei, L.J.3
-
30
-
-
3843116423
-
Generalized linear models for correlated pseudo-observations, with applications to multi-state models
-
Andersen PK, Klein JP, Rosthøj S. Generalized linear models for correlated pseudo-observations, with applications to multi-state models. Biometrika 2003; 90:15-27.
-
(2003)
Biometrika
, vol.90
, pp. 15-27
-
-
Andersen, P.K.1
Klein, J.P.2
Rosthøj, S.3
-
31
-
-
38649122710
-
SAS and R functions to compute pseudo-values for censored data regression
-
Klein JP, Gerster M, Andersen PK, Tarima S, Perme MP. SAS and R functions to compute pseudo-values for censored data regression. Computer Methods and Programs in Biomedicine 2008; 89:289-300.
-
(2008)
Computer Methods and Programs in Biomedicine
, vol.89
, pp. 289-300
-
-
Klein, J.P.1
Gerster, M.2
Andersen, P.K.3
Tarima, S.4
Perme, M.P.5
-
32
-
-
0032494717
-
Confidence intervals for the number needed to treat
-
Altman DG. Confidence intervals for the number needed to treat. British Medical Journal 1998; 317:1309-1312.
-
(1998)
British Medical Journal
, vol.317
, pp. 1309-1312
-
-
Altman, D.G.1
-
33
-
-
0034354086
-
Number needed to treat: properties and problems
-
Hutton JL. Number needed to treat: properties and problems. Journal of the Royal Statistical Society, Series A 2000; 163:381-402.
-
(2000)
Journal of the Royal Statistical Society
, vol.163
, pp. 381-402
-
-
Hutton, J.L.1
-
34
-
-
0035074086
-
Calculating confidence intervals for the number needed to treat
-
Bender R. Calculating confidence intervals for the number needed to treat. Controlled Clinical Trials 2001; 22:102-110.
-
(2001)
Controlled Clinical Trials
, vol.22
, pp. 102-110
-
-
Bender, R.1
-
35
-
-
45949100320
-
-
r package version 3.1-2, with contributions from many other users.
-
Harrell FJ. Hmisc: Harrell Miscellaneous, 2006. Available from: http://biostat.mc.vanderbilt.edu/s/Hmisc, r package version 3.1-2, with contributions from many other users.
-
(2006)
Hmisc: Harrell Miscellaneous
-
-
Harrell, F.J.1
-
36
-
-
45749101531
-
-
r package version 2.1-1
-
Harrell FJ. Design: Design Package, 2007. Available from: http://biostat.mc.vanderbilt.edu/s/Design http://biostat. mc. vanderbilt.edu/rms, r package version 2.1-1.
-
(2007)
Design: Design Package
-
-
Harrell, F.J.1
-
37
-
-
29844439660
-
-
R package version 4.13-11, ported to R by Thomas Lumley (versions 3.13 and 4.4) and Brian Ripley (version 4.13).
-
Carey VJ. gee: Generalized Estimation Equation Solver, 2006. R package version 4.13-11, ported to R by Thomas Lumley (versions 3.13 and 4.4) and Brian Ripley (version 4.13).
-
(2006)
gee: Generalized Estimation Equation Solver
-
-
Carey, V.J.1
-
38
-
-
84877830677
-
CA. Absolute numbers best for discussing treatment options.
-
CA. Absolute numbers best for discussing treatment options. CA: A Cancer Journal for Clinicians 2004; 54:123-124.
-
(2004)
CA: A Cancer Journal for Clinicians
, vol.54
, pp. 123-124
-
-
-
39
-
-
0642307262
-
Is relative risk reduction a useful measure for patients or families who must choose a method of treatment?
-
Wieand HS. Is relative risk reduction a useful measure for patients or families who must choose a method of treatment? Journal of Clinical Oncology 2003; 21:4263-4264.
-
(2003)
Journal of Clinical Oncology
, vol.21
, pp. 4263-4264
-
-
Wieand, H.S.1
-
40
-
-
33745652295
-
End points in clinical trials: are they moving the goalposts?
-
Leung DY, French JK. End points in clinical trials: are they moving the goalposts? Heart 2006; 92:870-872.
-
(2006)
Heart
, vol.92
, pp. 870-872
-
-
Leung, D.Y.1
French, J.K.2
-
41
-
-
0033524123
-
Calculating the number needed to treat for trials where the outcome is time to an event
-
Altman DG, Andersen PK. Calculating the number needed to treat for trials where the outcome is time to an event. British Medical Journal 1999; 319:1492-1495.
-
(1999)
British Medical Journal
, vol.319
, pp. 1492-1495
-
-
Altman, D.G.1
Andersen, P.K.2
-
42
-
-
16844380315
-
A comparison of goodness of fit tests for the logistic gee model
-
Evans SR, Li L. A comparison of goodness of fit tests for the logistic gee model. Statistics in Medicine 2005; 24:1245-1261.
-
(2005)
Statistics in Medicine
, vol.24
, pp. 1245-1261
-
-
Evans, S.R.1
Li, L.2
|