메뉴 건너뛰기




Volumn 10, Issue SUPPL. 11, 2009, Pages

NATbox: A network analysis toolbox in R

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER OPERATING SYSTEMS; COMPUTER PROGRAMMING; CROSSTALK; DATA VISUALIZATION; ELECTRIC BATTERIES; GENES; GRAPHICAL USER INTERFACES; MODELING LANGUAGES; OPEN SOURCE SOFTWARE; STATISTICAL MECHANICS; TEACHING; TOPOLOGY; USER INTERFACES;

EID: 70449393175     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-S11-S14     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • 1239896, 16199517
    • Subramanian A. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci USA 2005, 102(43):15545-50. 1239896, 16199517.
    • (2005) Proc Nat Acad Sci USA , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1
  • 2
    • 58349111875 scopus 로고    scopus 로고
    • AmiGO: online access to ontology and annotation data
    • 2639003, 19033274
    • Carbon S. AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25(2):288-9. 2639003, 19033274.
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 288-289
    • Carbon, S.1
  • 3
    • 34748911728 scopus 로고    scopus 로고
    • Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFβ2
    • Zhou. Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFβ2. Nature Genetics 2007, 39:1225-1234.
    • (2007) Nature Genetics , vol.39 , pp. 1225-1234
    • Zhou1
  • 4
    • 17644427718 scopus 로고    scopus 로고
    • Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data
    • Sachs K. Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science 2005, 308:523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 5
    • 0003398906 scopus 로고    scopus 로고
    • Causality: Models, Reasoning, and Inference
    • Cambridge University Press
    • Pearl J. Causality: Models, Reasoning, and Inference. 2000, Cambridge University Press.
    • (2000)
    • Pearl, J.1
  • 6
    • 0033083733 scopus 로고    scopus 로고
    • Genetic Regulation at the Nanomolar Scale: It's a Noisy Business!
    • McAdams H, H Arkin AP. Genetic Regulation at the Nanomolar Scale: It's a Noisy Business!. Trends in Genetics 1999, 15(2):65-69.
    • (1999) Trends in Genetics , vol.15 , Issue.2 , pp. 65-69
    • McAdams, H.1    H Arkin, A.P.2
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian Network to Analyze Expression Data
    • Friedman N. Using Bayesian Network to Analyze Expression Data. J Computational Biology 2000, 7:601-620.
    • (2000) J Computational Biology , vol.7 , pp. 601-620
    • Friedman, N.1
  • 9
    • 0036254463 scopus 로고    scopus 로고
    • Modeling Stem Cell Development by Retrospective Analysis of Gene Expression Profiles in Single Progenitor-Derived Colonies
    • Madras N. Modeling Stem Cell Development by Retrospective Analysis of Gene Expression Profiles in Single Progenitor-Derived Colonies. Stem Cells 2002, 20:230-240.
    • (2002) Stem Cells , vol.20 , pp. 230-240
    • Madras, N.1
  • 10
    • 4143067218 scopus 로고    scopus 로고
    • Modeling genetic networks from clonal analysis
    • Nagarajan R. Modeling genetic networks from clonal analysis. J Theor Biol 2004, 230(3):359-73.
    • (2004) J Theor Biol , vol.230 , Issue.3 , pp. 359-373
    • Nagarajan, R.1
  • 11
    • 47349133128 scopus 로고    scopus 로고
    • Bayesian Network Inference with Java Objects (BANJO)
    • Hartemink A. Bayesian Network Inference with Java Objects (BANJO). , http://www.cs.duke.edu/~amink/software/
    • Hartemink, A.1
  • 12
    • 0003694781 scopus 로고    scopus 로고
    • Bayes NET Toolbox for MATLAB
    • Murphy K. Bayes NET Toolbox for MATLAB. , http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
    • Murphy, K.1
  • 13
    • 33751356890 scopus 로고    scopus 로고
    • BNArray: an R package for constructing gene regulatory net-works from microarray data by using Bayesian network
    • Chen X. BNArray: an R package for constructing gene regulatory net-works from microarray data by using Bayesian network. Bioinformatics 2006, 22(23):2952-4.
    • (2006) Bioinformatics , vol.22 , Issue.23 , pp. 2952-2954
    • Chen, X.1
  • 14
    • 5344244656 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Foundation for Statistical Computing
    • R Development Core Team R: A language and environment for statistical computing. 2008, R Foundation for Statistical Computing.
    • (2008)
  • 15
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: local least squares imputation
    • Kim H. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 2005, 21(2):187-198.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 187-198
    • Kim, H.1
  • 16
    • 4544365481 scopus 로고    scopus 로고
    • Deal: a package for learning Bayesian Networks
    • Bøttcher SG, Dethlefsen C. Deal: a package for learning Bayesian Networks. J Stat Software 2003, 8:1-40.
    • (2003) J Stat Software , vol.8 , pp. 1-40
    • Bøttcher, S.G.1    Dethlefsen, C.2
  • 18
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological networks for functional discovery
    • Hu H. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 2005, 21(Suppl):i213-i221.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL
    • Hu, H.1
  • 24
    • 33746035971 scopus 로고    scopus 로고
    • The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm
    • Tsamardinos I. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning 2006, 65(1):31-78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1
  • 28
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabási A-L. Network biology: understanding the cell's functional organization. Nature Reviews Genetics 2004, 5:101-113.
    • (2004) Nature Reviews Genetics , vol.5 , pp. 101-113
    • Barabási, A.-.L.1
  • 29
    • 10044260009 scopus 로고    scopus 로고
    • Problems with fitting to the power-law distribution
    • Goldstein ML. Problems with fitting to the power-law distribution. The European Physical Journal 2004, B41:255-258.
    • (2004) The European Physical Journal , vol.B41 , pp. 255-258
    • Goldstein, M.L.1
  • 30
    • 0037174670 scopus 로고    scopus 로고
    • Network Motifs: Simple Building Blocks of Complex Networks
    • Milo R. Network Motifs: Simple Building Blocks of Complex Networks. Science 2002, 298:824-827.
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 31
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: a software environment for integrated models of biomolecular interaction networks
    • 403769, 14597658
    • Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 2003, 13(11):2498-504. 403769, 14597658.
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2498-2504
    • Shannon, P.1
  • 35
    • 33746035971 scopus 로고    scopus 로고
    • "The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm"
    • Tsamardinos I, Brown LE, Aliferis CF. "The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm". Machine Learning 2006, 65(1):31-78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.