메뉴 건너뛰기




Volumn 2, Issue 4, 2006, Pages 1235-1240

Improving generalization ability of neural networks ensemble with multi-task learning

Author keywords

Multi task learning; Neural networks ensemble

Indexed keywords

FEATURE EXTRACTION; FORECASTING; GENETIC ALGORITHMS; HEURISTIC METHODS; NEURAL NETWORKS;

EID: 33845734163     PISSN: 15539105     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (16)
  • 1
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • T. Dietterich. Machine-learning research: Four current directions. The AI Magazine, 1998. 18(4): 97-136.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.1
  • 2
    • 0025448521 scopus 로고
    • The strength of weak learn ability
    • R. Schapire. The strength of weak learn ability. Machine learning, 1990. 5(2): 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors, machine learning
    • L. Breiman. Bagging predictors, machine learning. Machine learning, 1996. 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E Bauer, R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 1999. 36(2): 105-139.
    • (1999) Machine Learning , vol.36 , Issue.2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu, L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans, on Knowledge and Data Engineering, 2005. 17(3): 1-12.
    • (2005) IEEE Trans, on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 7
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 2004. 5 (Oct): 1205-1224.
    • (2004) Journal of Machine Learning Research , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 1997. 28(1): 41-75.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 10
    • 2942734703 scopus 로고    scopus 로고
    • Benefiting from the variables that variable selection discards
    • R. Caruana, V. R. de Sa. Benefiting from the variables that variable selection discards. Journal of machine learning research, 2003. 3: 1245-1264.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1245-1264
    • Caruana, R.1    de Sa, V.R.2
  • 14
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • J. Yang, V. Honavar. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998. 13: 44-49.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 16
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • Moody E., Hanson J. and Lippmann R.P.(ed.), vol. 4. Morgan Kaufmann Publishers, Inc.
    • J. Moody, J. Utans. Principled architecture selection for neural networks: Application to corporate bond rating prediction. In: Advances in Neural Information Processing Systems, Moody E, Hanson J, Lippmann R P, eds., vol. 4. Morgan Kaufmann Publishers, Inc., 1992 683-690.
    • (1992) Advances in Neural Information Processing Systems , pp. 683-690
    • Moody, J.1    Utans, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.