-
1
-
-
0004311217
-
-
rev. ed, Holden-Day, San Francisco
-
G.E.P. Box, G.M. Jenkins, Time Series Analysis Forecasting and Control, rev. ed., Holden-Day, San Francisco, 1976.
-
(1976)
Time Series Analysis Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
3
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V.N., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. J. Mach. Learn. Res. 46 1 (2002) 131-159
-
(2002)
J. Mach. Learn. Res.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.N.2
Bousquet, O.3
Mukherjee, S.4
-
4
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
5
-
-
0036464756
-
The particle swarm-explosion, stability, and convergence in amultidimensional complex space
-
Clerc M., and Kennedy J. The particle swarm-explosion, stability, and convergence in amultidimensional complex space. IEEE Trans. Evol. Comput. 6 1 (2002) 58-73
-
(2002)
IEEE Trans. Evol. Comput.
, vol.6
, Issue.1
, pp. 58-73
-
-
Clerc, M.1
Kennedy, J.2
-
6
-
-
34250263445
-
Smoothing noisy data with spline function
-
Craven P., and Wahba G. Smoothing noisy data with spline function. Numer. Math. 31 4 (1979) 377-403
-
(1979)
Numer. Math.
, vol.31
, Issue.4
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
7
-
-
61749103238
-
Particle swarm full model selection
-
H.J. Escalante, M. Montes, L.E. Sucar, Particle swarm full model selection, J. Mach. Learn. Res., 10 (2009) 405-440.
-
(2009)
J. Mach. Learn. Res
, vol.10
, pp. 405-440
-
-
Escalante, H.J.1
Montes, M.2
Sucar, L.E.3
-
8
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. Ann. Statist. 19 1 (1991) 1-67
-
(1991)
Ann. Statist.
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
9
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
Friedrichs F., and Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 64 (2005) 107-117
-
(2005)
Neurocomputing
, vol.64
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
10
-
-
33847321021
-
Fuzzy prediction of chaotic time series based on singular value decomposition
-
Gu H., and Wang H.W. Fuzzy prediction of chaotic time series based on singular value decomposition. Appl. Math. Comput. 185 2 (2007) 1171-1185
-
(2007)
Appl. Math. Comput.
, vol.185
, Issue.2
, pp. 1171-1185
-
-
Gu, H.1
Wang, H.W.2
-
11
-
-
34249726632
-
Efficient computation and model selection for the support vector regression
-
Gunter L., and Zhu J. Efficient computation and model selection for the support vector regression. Neural Comput. 19 (2007) 1633-1655
-
(2007)
Neural Comput.
, vol.19
, pp. 1633-1655
-
-
Gunter, L.1
Zhu, J.2
-
12
-
-
56549111881
-
A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
-
Guo X.C., Yang J.H., Wu C.G., et al. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71 (2008) 3211-3215
-
(2008)
Neurocomputing
, vol.71
, pp. 3211-3215
-
-
Guo, X.C.1
Yang, J.H.2
Wu, C.G.3
-
13
-
-
33748424239
-
The effect of different basis functions on a radial basis function network for time series prediction: a comparative study
-
Harpham C., and Dawson C.W. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 69 (2006) 2161-2170
-
(2006)
Neurocomputing
, vol.69
, pp. 2161-2170
-
-
Harpham, C.1
Dawson, C.W.2
-
14
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie T., Rosset S., Tibshirani R., and Zhu J. The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5 (2004) 1391-1415
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
15
-
-
0036738840
-
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
-
Keerthi S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networks 13 5 (2002) 1225-1229
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.5
, pp. 1225-1229
-
-
Keerthi, S.1
-
16
-
-
0029535737
-
Particle swarm optimization
-
Perth, Australia, IEEE Service Center, Piscataway, NJ
-
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, Perth, Australia, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942-1948.
-
(1995)
Proceedings of IEEE International Conference on Neural Networks
, vol.4
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.2
-
17
-
-
84958987386
-
Linear dependency between epsilon and the input noise in epsilon-support vector regression
-
Proceedings of the International Conference on Artificial Neural Networks, Springer, London, UK
-
J.T. Kwok, Linear dependency between epsilon and the input noise in epsilon-support vector regression, in: Proceedings of the International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, vol. 2130, Springer, London, UK, 2001, pp. 405-410.
-
(2001)
Lecture Notes in Computer Science
, vol.2130
, pp. 405-410
-
-
Kwok, J.T.1
-
18
-
-
38349186243
-
Local prediction of non-linear time series using support vector regression
-
Lau K.W., and Wu Q.H. Local prediction of non-linear time series using support vector regression. Pattern Recognition 41 5 (2008) 1539-1547
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1539-1547
-
-
Lau, K.W.1
Wu, Q.H.2
-
20
-
-
20444401917
-
Noise robust estimates of the largest Lyapunov exponent
-
Liu H.F., Dai Z.H., Li W.F., Gong X., and Yu Z.H. Noise robust estimates of the largest Lyapunov exponent. Phys. Lett. A 341 (2005) 119-127
-
(2005)
Phys. Lett. A
, vol.341
, pp. 119-127
-
-
Liu, H.F.1
Dai, Z.H.2
Li, W.F.3
Gong, X.4
Yu, Z.H.5
-
21
-
-
38049143933
-
Regularization paths for ν-SVM and ν-SVR
-
D. Liu, S. Fei, Z.G. Hou, H. Zhang, C.Y. Sun Eds, Advances in Neural Networks-ISNN, Springer, Berlin
-
G. Loosli, G. Gasso, S. Canu, Regularization paths for ν-SVM and ν-SVR, in: D. Liu, S. Fei, Z.G. Hou, H. Zhang, C.Y. Sun (Eds.), Advances in Neural Networks-ISNN, Lecture Notes in Computer Science, vol. 4493, Springer, Berlin, 2007, pp. 486-496.
-
(2007)
Lecture Notes in Computer Science
, vol.4493
, pp. 486-496
-
-
Loosli, G.1
Gasso, G.2
Canu, S.3
-
22
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963) 130
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130
-
-
Lorenz, E.1
-
23
-
-
0031375732
-
-
S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the IEEE Workshop on Neural Network for Signal Processing (NNSP'97), IEEE Press, Amelia Island, FL, 1997, pp. 511-520.
-
S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the IEEE Workshop on Neural Network for Signal Processing (NNSP'97), IEEE Press, Amelia Island, FL, 1997, pp. 511-520.
-
-
-
-
24
-
-
84956628443
-
-
K.R. Müller, A.J. Smola, G. Rätsch, B. Schölkopf et al., Predicting time series with support vector machines, in: Proceedings of International Conference on Artificial Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
-
K.R. Müller, A.J. Smola, G. Rätsch, B. Schölkopf et al., Predicting time series with support vector machines, in: Proceedings of International Conference on Artificial Neural Networks, 1997, Lausanne, Switzerland, pp. 999-1004.
-
-
-
-
25
-
-
51749098219
-
Neural network initialization with prototypes-function approximation in engineering mechanics applications
-
Orlando, FL
-
J.S. Pei, E.C. Mai, J.P. Wright, A.W. Smyth, Neural network initialization with prototypes-function approximation in engineering mechanics applications, in: Proceedings of 2007 International Joint Conference on Neural Networks (IJCNN 2007), IEEE Press, Orlando, FL, 2007, pp. 2110-2116.
-
(2007)
Proceedings of 2007 International Joint Conference on Neural Networks (IJCNN 2007), IEEE Press
, pp. 2110-2116
-
-
Pei, J.S.1
Mai, E.C.2
Wright, J.P.3
Smyth, A.W.4
-
26
-
-
34548452938
-
Piecewise linear regularized solution paths
-
Rosset S., and Zhu J. Piecewise linear regularized solution paths. Ann. Statist. 35 3 (2007) 1012-1030
-
(2007)
Ann. Statist.
, vol.35
, Issue.3
, pp. 1012-1030
-
-
Rosset, S.1
Zhu, J.2
-
28
-
-
0031700696
-
A modified particle swarm optimizer
-
Alaska, ALTEC
-
Y.H. Shi, R.Eberhart, A modified particle swarm optimizer, in: IEEE World Congress on Computer Intelligence, vol. 1, Alaska, ALTEC, 1998, pp. 69-73.
-
(1998)
IEEE World Congress on Computer Intelligence
, vol.1
, pp. 69-73
-
-
Shi, Y.H.1
Eberhart, R.2
-
29
-
-
0037721392
-
Asymptotically optimal choice of ε-loss for support vector machines
-
Springer, Berlin
-
A.J. Smola, N. Murata, B. Schölkopf, K.R. Müller, Asymptotically optimal choice of ε-loss for support vector machines, in: Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98), Perspectives in Neural Computing, Springer, Berlin, 1998, pp. 105-110.
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98), Perspectives in Neural Computing
, pp. 105-110
-
-
Smola, A.J.1
Murata, N.2
Schölkopf, B.3
Müller, K.R.4
-
30
-
-
0003401675
-
A tutorial on support vector regression
-
Royal Holloway College, London, UK
-
A.J. Smola, B. Schölkopf, A tutorial on support vector regression, NeuroCOLT Technical Report TR, Royal Holloway College, London, UK, 1998.
-
(1998)
NeuroCOLT Technical Report TR
-
-
Smola, A.J.1
Schölkopf, B.2
-
31
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
Stein C. Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 6 (1981) 1135-1151
-
(1981)
Ann. Statist.
, vol.9
, Issue.6
, pp. 1135-1151
-
-
Stein, C.1
-
32
-
-
0036825528
-
Weighted least squares support vector machines: robustness and sparse approximation
-
Suykens J.A.K., Brabanter J.D., Lukas L., and Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48 (2002) 85-105
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
Brabanter, J.D.2
Lukas, L.3
Vandewalle, J.4
-
33
-
-
0036825901
-
Modified support vector machines in financial time series forecasting
-
Tay F.E.H., and Cao L.J. Modified support vector machines in financial time series forecasting. Neurocomputing 48 (2002) 847-861
-
(2002)
Neurocomputing
, vol.48
, pp. 847-861
-
-
Tay, F.E.H.1
Cao, L.J.2
-
35
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Mozer M., Jordan M., and Petsche T. (Eds), MIT Press, Cambridge
-
Vapnik V.N., Golowich S., and Smola A.J. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M., Jordan M., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), MIT Press, Cambridge 281-287
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.N.1
Golowich, S.2
Smola, A.J.3
-
36
-
-
54349106864
-
A new solution path algorithm in support vector regression
-
G. Wang, D.Y. Yeung, F.H. Lochovsky, A new solution path algorithm in support vector regression, IEEE Trans. Neural Networks, 19 (10) (2008) 1753-1767
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.10
, pp. 1753-1767
-
-
Wang, G.1
Yeung, D.Y.2
Lochovsky, F.H.3
-
37
-
-
34250767233
-
Two dimensional solution path for support vector regression
-
Proceedings of the 23rd International Conference on Machine Learning ICML, Pittsburgh, Pennsylvania
-
G. Wang, D.Y. Yeung, F.H. Lochovsky, Two dimensional solution path for support vector regression, in: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), ACM International Conference Proceeding Series, Pittsburgh, Pennsylvania, 2006, pp. 993-1000.
-
(2006)
ACM International Conference Proceeding Series
, pp. 993-1000
-
-
Wang, G.1
Yeung, D.Y.2
Lochovsky, F.H.3
-
38
-
-
56549109169
-
A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression
-
Wen W., Hao Z.F., and Yang X.W. A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression. Neurocomputing 71 (2008) 3096-3103
-
(2008)
Neurocomputing
, vol.71
, pp. 3096-3103
-
-
Wen, W.1
Hao, Z.F.2
Yang, X.W.3
-
40
-
-
23044501770
-
Reweighted robust support vector regression method
-
Zhang J.S., and Gao G. Reweighted robust support vector regression method. Chin. J. Comput. Sci. 28 7 (2005) 1171-1177
-
(2005)
Chin. J. Comput. Sci.
, vol.28
, Issue.7
, pp. 1171-1177
-
-
Zhang, J.S.1
Gao, G.2
-
41
-
-
84899024917
-
1-norm support vector machines
-
Thrun S., Saul L.K., and Schölkopf B. (Eds), MIT Press, Cambridge
-
Zhu J., Rosset S., Hastie T., and Tibshirani R. 1-norm support vector machines. In: Thrun S., Saul L.K., and Schölkopf B. (Eds). Advances in Neural Information Processing Systems vol. 16 (2004), MIT Press, Cambridge 49-56
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 49-56
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
|