메뉴 건너뛰기




Volumn 64, Issue 4, 2009, Pages 127-138

Effective learning in the presence of adaptive counterparts

Author keywords

Adaptive learning algorithms; Matrix games; Multiagent learning

Indexed keywords

ADAPTIVE DYNAMICS; ADAPTIVE LEARNING ALGORITHM; ADAPTIVE LEARNING ALGORITHMS; EFFECTIVE LEARNING; EQUILIBRIUM SOLUTIONS; FICTITIOUS PLAY; GRADIENT ASCENT; HILL CLIMBING; INTERACTION HISTORY; MATRIX GAME; MATRIX GAMES; MULTIAGENT LEARNING; Q-LEARNING; Q-VALUES; SELF-PLAY;

EID: 70350566689     PISSN: 01966774     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jalgor.2009.04.003     Document Type: Article
Times cited : (10)

References (23)
  • 1
    • 0002021736 scopus 로고
    • Equilibrium points in n-person games
    • Nash J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36 1 (1950)
    • (1950) Proc. Natl. Acad. Sci. USA , vol.36 , Issue.1
    • Nash, J.1
  • 3
    • 34548132482 scopus 로고    scopus 로고
    • Apprentissage de la coordination multiagent: une méthode basée sur le Q-learning par jeu adaptatif
    • Gies O., and Chaib-draa B. Apprentissage de la coordination multiagent: une méthode basée sur le Q-learning par jeu adaptatif. Rev. Intelligence Artif. 20 2-3 (2006) 385-412
    • (2006) Rev. Intelligence Artif. , vol.20 , Issue.2-3 , pp. 385-412
    • Gies, O.1    Chaib-draa, B.2
  • 5
    • 4644369748 scopus 로고    scopus 로고
    • Nash Q-learning for general-sum stochastic games
    • Hu J., and Wellman M. Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4 (2003) 1039-1069
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1039-1069
    • Hu, J.1    Wellman, M.2
  • 6
    • 35248823118 scopus 로고    scopus 로고
    • Generalized multiagent learning with performance bound
    • 1387-2532
    • Banerjee B., and Peng J. Generalized multiagent learning with performance bound. Autonomous Agents Multi-Agent Syst., 1387-2532 15 3 (2007) 281-312
    • (2007) Autonomous Agents Multi-Agent Syst. , vol.15 , Issue.3 , pp. 281-312
    • Banerjee, B.1    Peng, J.2
  • 7
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling M., and Veloso M. Multiagent learning using a variable learning rate. Artificial Intelligence 136 2 (2002) 215-250
    • (2002) Artificial Intelligence , vol.136 , Issue.2 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 9
    • 84898960502 scopus 로고    scopus 로고
    • Playing is believing: The role of beliefs in multi-agent learning
    • NIPS'01. Vancouver, Canada, 2001, MIT Press, Cambridge, MA
    • Chang Y., and Kaelbling L.P. Playing is believing: The role of beliefs in multi-agent learning. NIPS'01. Vancouver, Canada, 2001. Adv. Neural Inf. Process. Syst. vol. 14 (2002), MIT Press, Cambridge, MA 1483-1490
    • (2002) Adv. Neural Inf. Process. Syst. , vol.14 , pp. 1483-1490
    • Chang, Y.1    Kaelbling, L.P.2
  • 10
    • 84898941549 scopus 로고    scopus 로고
    • Extending Q-learning to general adaptive multi-agent systems
    • NIPS'04. Thrun S., Saul L., and Scholkopf B. (Eds), MIT Press, Cambridge, MA
    • Tesauro G. Extending Q-learning to general adaptive multi-agent systems. In: Thrun S., Saul L., and Scholkopf B. (Eds). NIPS'04. Adv. Neural Inf. Process. Syst. vol. 16 (2004), MIT Press, Cambridge, MA
    • (2004) Adv. Neural Inf. Process. Syst. , vol.16
    • Tesauro, G.1
  • 11
    • 34147161536 scopus 로고    scopus 로고
    • If multi-agent learning is the answer, what is the question?
    • Shoham Y., Powers R., and Grenager T. If multi-agent learning is the answer, what is the question?. Artificial Intelligence 171 7 (2007) 365-377
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 14
  • 19
    • 0000595242 scopus 로고
    • Note on learning rate schedule for stochastic optimisation
    • NIPS'91, Morgan Kaufmann, San Mateo, CA
    • Darken C., and Moody J. Note on learning rate schedule for stochastic optimisation. NIPS'91. Adv. Neural Inf. Process. Syst. vol. 3 (1991), Morgan Kaufmann, San Mateo, CA 832-838
    • (1991) Adv. Neural Inf. Process. Syst. , vol.3 , pp. 832-838
    • Darken, C.1    Moody, J.2
  • 21
    • 84899959795 scopus 로고    scopus 로고
    • MB-AIM-FSI: A model based framework for exploiting gradient ascent multiagent learners in strategic interactions
    • International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
    • Chakraborty D., and Sen S. MB-AIM-FSI: A model based framework for exploiting gradient ascent multiagent learners in strategic interactions. Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'08 (2008), International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC 371-378
    • (2008) Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'08 , pp. 371-378
    • Chakraborty, D.1    Sen, S.2
  • 23
    • 84898936075 scopus 로고    scopus 로고
    • New criteria and a new algorithm for learning in multi-agent systems
    • NIPS'05. Saul L.K., Weiss Y., and Bottou L. (Eds), MIT Press, Cambridge, MA
    • Powers R., and Shoham Y. New criteria and a new algorithm for learning in multi-agent systems. In: Saul L.K., Weiss Y., and Bottou L. (Eds). NIPS'05. Adv. Neural Inf. Process. Syst. vol. 17 (2005), MIT Press, Cambridge, MA
    • (2005) Adv. Neural Inf. Process. Syst. , vol.17
    • Powers, R.1    Shoham, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.