-
1
-
-
0002021736
-
Equilibrium points in n-person games
-
Nash J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36 1 (1950)
-
(1950)
Proc. Natl. Acad. Sci. USA
, vol.36
, Issue.1
-
-
Nash, J.1
-
2
-
-
0031630561
-
The dynamics of reinforcement learning in cooperative multiagent systems
-
AAAI Press, Menlo Park, CA
-
Claus C., and Boutilier C. The dynamics of reinforcement learning in cooperative multiagent systems. Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI'98 (1998), AAAI Press, Menlo Park, CA 746-752
-
(1998)
Proceedings of the Fifteenth National Conference on Artificial Intelligence, AAAI'98
, pp. 746-752
-
-
Claus, C.1
Boutilier, C.2
-
3
-
-
34548132482
-
Apprentissage de la coordination multiagent: une méthode basée sur le Q-learning par jeu adaptatif
-
Gies O., and Chaib-draa B. Apprentissage de la coordination multiagent: une méthode basée sur le Q-learning par jeu adaptatif. Rev. Intelligence Artif. 20 2-3 (2006) 385-412
-
(2006)
Rev. Intelligence Artif.
, vol.20
, Issue.2-3
, pp. 385-412
-
-
Gies, O.1
Chaib-draa, B.2
-
4
-
-
0001644761
-
Nash convergence of gradient dynamics in general-sum games
-
Morgan Kaufmann, San Francisco, CA
-
Singh S., Kearns M., and Mansour Y. Nash convergence of gradient dynamics in general-sum games. Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI'00 (2000), Morgan Kaufmann, San Francisco, CA 541-548
-
(2000)
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI'00
, pp. 541-548
-
-
Singh, S.1
Kearns, M.2
Mansour, Y.3
-
5
-
-
4644369748
-
Nash Q-learning for general-sum stochastic games
-
Hu J., and Wellman M. Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4 (2003) 1039-1069
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 1039-1069
-
-
Hu, J.1
Wellman, M.2
-
6
-
-
35248823118
-
Generalized multiagent learning with performance bound
-
1387-2532
-
Banerjee B., and Peng J. Generalized multiagent learning with performance bound. Autonomous Agents Multi-Agent Syst., 1387-2532 15 3 (2007) 281-312
-
(2007)
Autonomous Agents Multi-Agent Syst.
, vol.15
, Issue.3
, pp. 281-312
-
-
Banerjee, B.1
Peng, J.2
-
7
-
-
0036531878
-
Multiagent learning using a variable learning rate
-
Bowling M., and Veloso M. Multiagent learning using a variable learning rate. Artificial Intelligence 136 2 (2002) 215-250
-
(2002)
Artificial Intelligence
, vol.136
, Issue.2
, pp. 215-250
-
-
Bowling, M.1
Veloso, M.2
-
8
-
-
22944447799
-
-
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA
-
M. Bowling, Multiagent learning in the presence of agents with limitations, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2003
-
(2003)
Multiagent learning in the presence of agents with limitations
-
-
Bowling, M.1
-
9
-
-
84898960502
-
Playing is believing: The role of beliefs in multi-agent learning
-
NIPS'01. Vancouver, Canada, 2001, MIT Press, Cambridge, MA
-
Chang Y., and Kaelbling L.P. Playing is believing: The role of beliefs in multi-agent learning. NIPS'01. Vancouver, Canada, 2001. Adv. Neural Inf. Process. Syst. vol. 14 (2002), MIT Press, Cambridge, MA 1483-1490
-
(2002)
Adv. Neural Inf. Process. Syst.
, vol.14
, pp. 1483-1490
-
-
Chang, Y.1
Kaelbling, L.P.2
-
10
-
-
84898941549
-
Extending Q-learning to general adaptive multi-agent systems
-
NIPS'04. Thrun S., Saul L., and Scholkopf B. (Eds), MIT Press, Cambridge, MA
-
Tesauro G. Extending Q-learning to general adaptive multi-agent systems. In: Thrun S., Saul L., and Scholkopf B. (Eds). NIPS'04. Adv. Neural Inf. Process. Syst. vol. 16 (2004), MIT Press, Cambridge, MA
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
-
-
Tesauro, G.1
-
11
-
-
34147161536
-
If multi-agent learning is the answer, what is the question?
-
Shoham Y., Powers R., and Grenager T. If multi-agent learning is the answer, what is the question?. Artificial Intelligence 171 7 (2007) 365-377
-
(2007)
Artificial Intelligence
, vol.171
, Issue.7
, pp. 365-377
-
-
Shoham, Y.1
Powers, R.2
Grenager, T.3
-
12
-
-
31844455339
-
Learning to compete, compromise, and cooperate in repeated general-sum games
-
ACM Press
-
Crandall J.W., and Goodrich M.A. Learning to compete, compromise, and cooperate in repeated general-sum games. Proceedings of the Twenty Second International Conference on Machine Learning, ICML'05 (2005), ACM Press 161-168
-
(2005)
Proceedings of the Twenty Second International Conference on Machine Learning, ICML'05
, pp. 161-168
-
-
Crandall, J.W.1
Goodrich, M.A.2
-
18
-
-
4544335718
-
Run the gamut: A comprehensive approach to evaluating game-theoretic algorithms
-
E. Nudelman, J. Wortman, Y. Shoham, K. Leyton-brown, Run the gamut: A comprehensive approach to evaluating game-theoretic algorithms, in: Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'04, 2004, pp. 880-887
-
(2004)
Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'04
, pp. 880-887
-
-
Nudelman, E.1
Wortman, J.2
Shoham, Y.3
Leyton-brown, K.4
-
19
-
-
0000595242
-
Note on learning rate schedule for stochastic optimisation
-
NIPS'91, Morgan Kaufmann, San Mateo, CA
-
Darken C., and Moody J. Note on learning rate schedule for stochastic optimisation. NIPS'91. Adv. Neural Inf. Process. Syst. vol. 3 (1991), Morgan Kaufmann, San Mateo, CA 832-838
-
(1991)
Adv. Neural Inf. Process. Syst.
, vol.3
, pp. 832-838
-
-
Darken, C.1
Moody, J.2
-
20
-
-
0003411271
-
-
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA
-
S. Thrun, Efficient exploration in reinforcement learning, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992
-
(1992)
Efficient exploration in reinforcement learning
-
-
Thrun, S.1
-
21
-
-
84899959795
-
MB-AIM-FSI: A model based framework for exploiting gradient ascent multiagent learners in strategic interactions
-
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
-
Chakraborty D., and Sen S. MB-AIM-FSI: A model based framework for exploiting gradient ascent multiagent learners in strategic interactions. Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'08 (2008), International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC 371-378
-
(2008)
Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS'08
, pp. 371-378
-
-
Chakraborty, D.1
Sen, S.2
-
22
-
-
33745609272
-
Learning against opponents with bounded memory
-
Edinburgh, UK
-
R. Powers, Y. Shoham, Learning against opponents with bounded memory, in: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI'05, Edinburgh, UK, 2005
-
(2005)
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI'05
-
-
Powers, R.1
Shoham, Y.2
-
23
-
-
84898936075
-
New criteria and a new algorithm for learning in multi-agent systems
-
NIPS'05. Saul L.K., Weiss Y., and Bottou L. (Eds), MIT Press, Cambridge, MA
-
Powers R., and Shoham Y. New criteria and a new algorithm for learning in multi-agent systems. In: Saul L.K., Weiss Y., and Bottou L. (Eds). NIPS'05. Adv. Neural Inf. Process. Syst. vol. 17 (2005), MIT Press, Cambridge, MA
-
(2005)
Adv. Neural Inf. Process. Syst.
, vol.17
-
-
Powers, R.1
Shoham, Y.2
|