-
1
-
-
34548132701
-
Countering Deception in Multiagent Reinforcement Learning
-
«, Melbourne, Australia, July
-
Banerjee B., Peng J., « Countering Deception in Multiagent Reinforcement Learning», Procee-dings of the Second International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-03) Workshop on Trust, Privacy, Deception and Fraud in Agent Societies, Melbourne, Australia, July, 2003.
-
(2003)
Procee-dings of the Second International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-03) Workshop on Trust, Privacy, Deception and Fraud in Agent Societies
-
-
Banerjee, B.1
Peng, J.2
-
2
-
-
0002672918
-
Iterative Solution of Games by Fictitious Play
-
«, T. C. Koopmans ed, Wiley, New York, chapter XXIV
-
Brown G. W., « Iterative Solution of Games by Fictitious Play », in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, Wiley, New York, chapter XXIV, 1951.
-
(1951)
Activity Analysis of Production and Allocation
-
-
Brown, G.W.1
-
3
-
-
0031630561
-
The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems
-
« »
-
Claus C., Boutilier C., « The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems », AAAI/IAAI, p. 746-752, 1998.
-
(1998)
AAAI/IAAI
, pp. 746-752
-
-
Claus, C.1
Boutilier, C.2
-
4
-
-
0004247096
-
-
The MIT Press, Cambridge, Massaehussets
-
Fudenberg D., Levine D. K., The Theory of Learning in Games, The MIT Press, Cambridge, Massaehussets, 1998.
-
(1998)
The Theory of Learning in Games
-
-
Fudenberg, D.1
Levine, D.K.2
-
7
-
-
0036436650
-
On the Global Convergence of Stochastic Fictitious Play
-
« », November, available at
-
Hofbauer J., Sandholm W. H., « On the Global Convergence of Stochastic Fictitious Play », Econometrica, vol. 70, ň 6, p. 2265-2294, November, 2002. available at http://ideas.repec.org/a/ecm/emetrp/ v70y2002i6p2265-2294.html.
-
(2002)
Econometrica
, vol.70
, Issue.6
, pp. 2265-2294
-
-
Hofbauer, J.1
Sandholm, W.H.2
-
8
-
-
4644369748
-
Nash Q-learning for general-sum stochastic games
-
« »
-
Hu J., Wellman M. P., « Nash Q-learning for general-sum stochastic games », J. Mach. Learn. Res., vol. 4, p. 1039-1069, 2003.
-
(2003)
J. Mach. Learn. Res
, vol.4
, pp. 1039-1069
-
-
Hu, J.1
Wellman, M.P.2
-
9
-
-
0029679044
-
Reinforcement Learning: A Survey
-
« »
-
Kaelbling L. P., Littman M. L., Moore A. P., « Reinforcement Learning: A Survey », Journal of Artificial Intelligence Research, vol. 4, p. 237-285, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 237-285
-
-
Kaelbling, L.P.1
Littman, M.L.2
Moore, A.P.3
-
10
-
-
85149834820
-
Markov Games as a Framework for Multi-Agent Reinforcement Learning
-
«, Morgan Kaufmann, New Brunswick, NJ, p
-
Littman M. L., « Markov Games as a Framework for Multi-Agent Reinforcement Learning», Proceedings of the 11th International Conference on Machine Learning (ML-94), Morgan Kaufmann, New Brunswick, NJ, p. 157-163, 1994.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning (ML-94)
, pp. 157-163
-
-
Littman, M.L.1
-
11
-
-
34548132700
-
-
Littman M. L., « Friend-or-foe: Q-learning in general-sum stochastic games », Proceedings of the Eighteenth International Conference on Machine Learning, p. 322-328, 2001.
-
Littman M. L., « Friend-or-foe: Q-learning in general-sum stochastic games », Proceedings of the Eighteenth International Conference on Machine Learning, p. 322-328, 2001.
-
-
-
-
13
-
-
84898941549
-
Extending Q-Leaming to General Adaptive Multi-Agent Systems
-
«, S. Thrun, L. Saul, B. Schülkopf eds, MIT Press, Cambridge, MA
-
Tesauro G., « Extending Q-Leaming to General Adaptive Multi-Agent Systems », in S. Thrun, L. Saul, B. Schülkopf (eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Tesauro, G.1
-
14
-
-
0346502047
-
Predicting the Expected Behavior of Agents that Learn About Agents : The CLRI Framework
-
« », n&̌ l, p
-
Vidal J. M., Durfee E. H., « Predicting the Expected Behavior of Agents that Learn About Agents : The CLRI Framework », Autonomous Agents and Multi-Agent Systems, vol. 6, n&̌ l, p. 77-107, 2003.
-
(2003)
Autonomous Agents and Multi-Agent Systems
, vol.6
, pp. 77-107
-
-
Vidal, J.M.1
Durfee, E.H.2
-
15
-
-
27744448185
-
Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games
-
«, S. Becker, S. Thrun, K. Obermayer eds, MIT Press, Cambridge, MA, p
-
Wang X., Sandholm T., « Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games », in S. Becker, S. Thrun, K. Obermayer (eds), Advances in Neural information Processing Systems 15, MIT Press, Cambridge, MA, p. 1571-1578, 2003.
-
(2003)
Advances in Neural information Processing Systems 15
, pp. 1571-1578
-
-
Wang, X.1
Sandholm, T.2
-
16
-
-
34249833101
-
Q-learning
-
« », n&̌ 3/4, p
-
Watkins C. J., Dayan P., « Q-learning », Machine Learning, vol. 8, n&̌ 3/4, p. 279-292, 1992.
-
(1992)
Machine Learning
, vol.8
, pp. 279-292
-
-
Watkins, C.J.1
Dayan, P.2
-
17
-
-
4544231144
-
Best-Response Multiagent Learning in Non-Stationary Environments
-
«, Columbia University, New York City, July
-
Weinberg M., Rosenschein J. S., « Best-Response Multiagent Learning in Non-Stationary Environments », Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-04), Columbia University, New York City, July, 2004.
-
(2004)
Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-04)
-
-
Weinberg, M.1
Rosenschein, J.S.2
|