메뉴 건너뛰기




Volumn 20, Issue 2-3, 2006, Pages 383-410

Learning multiagent coordination: An adaptative Q-learning approach;Apprentissage de la coordination multiagent Une méthode basée sur le Q-learning par jeu adaptatif

Author keywords

Adaptative game; Markovien game; MDP; Multiagent learning

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; PARETO PRINCIPLE; RANDOM PROCESSES;

EID: 34548132482     PISSN: 0992499X     EISSN: None     Source Type: Journal    
DOI: 10.3166/ria.20.383-410     Document Type: Article
Times cited : (7)

References (18)
  • 2
    • 0002672918 scopus 로고
    • Iterative Solution of Games by Fictitious Play
    • «, T. C. Koopmans ed, Wiley, New York, chapter XXIV
    • Brown G. W., « Iterative Solution of Games by Fictitious Play », in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, Wiley, New York, chapter XXIV, 1951.
    • (1951) Activity Analysis of Production and Allocation
    • Brown, G.W.1
  • 3
    • 0031630561 scopus 로고    scopus 로고
    • The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems
    • « »
    • Claus C., Boutilier C., « The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems », AAAI/IAAI, p. 746-752, 1998.
    • (1998) AAAI/IAAI , pp. 746-752
    • Claus, C.1    Boutilier, C.2
  • 7
    • 0036436650 scopus 로고    scopus 로고
    • On the Global Convergence of Stochastic Fictitious Play
    • « », November, available at
    • Hofbauer J., Sandholm W. H., « On the Global Convergence of Stochastic Fictitious Play », Econometrica, vol. 70, ň 6, p. 2265-2294, November, 2002. available at http://ideas.repec.org/a/ecm/emetrp/ v70y2002i6p2265-2294.html.
    • (2002) Econometrica , vol.70 , Issue.6 , pp. 2265-2294
    • Hofbauer, J.1    Sandholm, W.H.2
  • 8
    • 4644369748 scopus 로고    scopus 로고
    • Nash Q-learning for general-sum stochastic games
    • « »
    • Hu J., Wellman M. P., « Nash Q-learning for general-sum stochastic games », J. Mach. Learn. Res., vol. 4, p. 1039-1069, 2003.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1039-1069
    • Hu, J.1    Wellman, M.P.2
  • 10
    • 85149834820 scopus 로고
    • Markov Games as a Framework for Multi-Agent Reinforcement Learning
    • «, Morgan Kaufmann, New Brunswick, NJ, p
    • Littman M. L., « Markov Games as a Framework for Multi-Agent Reinforcement Learning», Proceedings of the 11th International Conference on Machine Learning (ML-94), Morgan Kaufmann, New Brunswick, NJ, p. 157-163, 1994.
    • (1994) Proceedings of the 11th International Conference on Machine Learning (ML-94) , pp. 157-163
    • Littman, M.L.1
  • 11
    • 34548132700 scopus 로고    scopus 로고
    • Littman M. L., « Friend-or-foe: Q-learning in general-sum stochastic games », Proceedings of the Eighteenth International Conference on Machine Learning, p. 322-328, 2001.
    • Littman M. L., « Friend-or-foe: Q-learning in general-sum stochastic games », Proceedings of the Eighteenth International Conference on Machine Learning, p. 322-328, 2001.
  • 13
    • 84898941549 scopus 로고    scopus 로고
    • Extending Q-Leaming to General Adaptive Multi-Agent Systems
    • «, S. Thrun, L. Saul, B. Schülkopf eds, MIT Press, Cambridge, MA
    • Tesauro G., « Extending Q-Leaming to General Adaptive Multi-Agent Systems », in S. Thrun, L. Saul, B. Schülkopf (eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Tesauro, G.1
  • 14
    • 0346502047 scopus 로고    scopus 로고
    • Predicting the Expected Behavior of Agents that Learn About Agents : The CLRI Framework
    • « », n&̌ l, p
    • Vidal J. M., Durfee E. H., « Predicting the Expected Behavior of Agents that Learn About Agents : The CLRI Framework », Autonomous Agents and Multi-Agent Systems, vol. 6, n&̌ l, p. 77-107, 2003.
    • (2003) Autonomous Agents and Multi-Agent Systems , vol.6 , pp. 77-107
    • Vidal, J.M.1    Durfee, E.H.2
  • 15
    • 27744448185 scopus 로고    scopus 로고
    • Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games
    • «, S. Becker, S. Thrun, K. Obermayer eds, MIT Press, Cambridge, MA, p
    • Wang X., Sandholm T., « Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games », in S. Becker, S. Thrun, K. Obermayer (eds), Advances in Neural information Processing Systems 15, MIT Press, Cambridge, MA, p. 1571-1578, 2003.
    • (2003) Advances in Neural information Processing Systems 15 , pp. 1571-1578
    • Wang, X.1    Sandholm, T.2
  • 16
    • 34249833101 scopus 로고
    • Q-learning
    • « », n&̌ 3/4, p
    • Watkins C. J., Dayan P., « Q-learning », Machine Learning, vol. 8, n&̌ 3/4, p. 279-292, 1992.
    • (1992) Machine Learning , vol.8 , pp. 279-292
    • Watkins, C.J.1    Dayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.