메뉴 건너뛰기




Volumn 5678 LNAI, Issue , 2009, Pages 577-586

Evaluating the impact of missing data imputation

Author keywords

Impact; Imputation; Missing data; Random forest; Sensitivity

Indexed keywords

IMPACT; IMPUTATION; MISSING DATA; RANDOM FOREST; SENSITIVITY;

EID: 70350325172     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-03348-3_59     Document Type: Conference Paper
Times cited : (18)

References (18)
  • 2
    • 33846873244 scopus 로고    scopus 로고
    • Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models
    • Horton, N.J., Kleinman, K.P.: Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. The American Statistician 61(1), 79-90 (2007)
    • (2007) The American Statistician , vol.61 , Issue.1 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 3
    • 33646470217 scopus 로고    scopus 로고
    • Impact of Missing Data in Evaluating Artificial Neural Networks Trained on Complete Data
    • Elsevier, Amsterdam
    • Markey, M.K., Tourassi, G.D., Margolis, M., DeLong, D.M.: Impact of Missing Data in Evaluating Artificial Neural Networks Trained on Complete Data. In: Computers in Biology and Medicine, vol. 36, pp. 517-525. Elsevier, Amsterdam (2006)
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 517-525
    • Markey, M.K.1    Tourassi, G.D.2    Margolis, M.3    DeLong, D.M.4
  • 5
  • 6
    • 0041382385 scopus 로고    scopus 로고
    • Department of Statistics, University of California, Berkeley
    • Breiman, L., Cutler, A.: Random Forests. Department of Statistics, University of California, Berkeley (2004)
    • (2004) Random Forests
    • Breiman, L.1    Cutler, A.2
  • 9
    • 15944418607 scopus 로고    scopus 로고
    • Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources
    • Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources. In: Pacific Symposium on Biocomputing, vol. 10, pp. 531-542 (2005)
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 10
    • 70350344972 scopus 로고    scopus 로고
    • Ntsaluba, A.: Summary Report: National HIV and Syphilis Sero-prevalence Survey of Women Attending Public Antenatal Clinics in South Africa, Department of Health, South African Government (2001)
    • Ntsaluba, A.: Summary Report: National HIV and Syphilis Sero-prevalence Survey of Women Attending Public Antenatal Clinics in South Africa, Department of Health, South African Government (2001)
  • 13
    • 33846205588 scopus 로고    scopus 로고
    • Autoencoder Networks for HIV Classification
    • Betechuoh, B.L., Marwala, T., Tettey, T.: Autoencoder Networks for HIV Classification. Current Science 91(11), 1467-1473 (2006)
    • (2006) Current Science , vol.91 , Issue.11 , pp. 1467-1473
    • Betechuoh, B.L.1    Marwala, T.2    Tettey, T.3
  • 16
    • 10044229782 scopus 로고    scopus 로고
    • 1st edn. Routledge Taylor & Francis Group, Abington
    • Ye, N.: The Handbook of Data Mining, 1st edn. Routledge Taylor & Francis Group, Abington (2003)
    • (2003) The Handbook of Data Mining
    • Ye, N.1
  • 18
    • 70350324004 scopus 로고    scopus 로고
    • Multiple Imputation as a Missing Data Approach to Reject Inference on Consumer Credit Scoring
    • Fogarty, D.J.: Multiple Imputation as a Missing Data Approach to Reject Inference on Consumer Credit Scoring. Intersat 41(9) (2006)
    • (2006) Intersat , vol.41 , Issue.9
    • Fogarty, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.