메뉴 건너뛰기




Volumn 61 AISC, Issue , 2009, Pages 53-62

Missing data imputation through the use of the random forest algorithm

Author keywords

Auto associative; Imputation; Missing data; Neural network; Random forest

Indexed keywords

DECISION TREES; GENETIC ALGORITHMS; HYBRID SYSTEMS; NEURAL NETWORKS;

EID: 84894310847     PISSN: 18675662     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-03156-4_6     Document Type: Conference Paper
Times cited : (62)

References (28)
  • 2
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
    • Horton, N.J., Kleinman, K.P.: Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. The American Statistician 61(1), 79-90 (2007).
    • (2007) The American Statistician , vol.61 , Issue.1 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 3
    • 33646470217 scopus 로고    scopus 로고
    • Impact of missing data in evaluating artificial neural networks trained on complete data
    • Elsevier, Amsterdam
    • Markey, M.K., Tourassi, G.D., Margolis, M., DeLong, D.M.: Impact of Missing Data in Evaluating Artificial Neural Networks Trained on Complete Data. In: Computers in Biology and Medicine, vol. 36, pp. 517-525. Elsevier, Amsterdam (2006).
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 517-525
    • Markey, M.K.1    Tourassi, G.D.2    Margolis, M.3    DeLong, D.M.4
  • 6
    • 70350324004 scopus 로고    scopus 로고
    • Multiple imputation as a missing data approach to reject inference on consumer credit scoring
    • Fogarty, D.J.: Multiple Imputation as a Missing Data Approach to Reject Inference on Consumer Credit Scoring. Intersat 41(9) (2006).
    • (2006) Intersat , vol.41 , Issue.9
    • Fogarty, D.J.1
  • 7
    • 0034555721 scopus 로고    scopus 로고
    • Three likelihood-based methods for mean and covariance structure analysis with non-normal missing data
    • Yuan, K.H., Bentler, P.M.: Three likelihood-based methods for mean and covariance structure analysis with non-normal missing data. Sociological Methodology, 165-200 (2000).
    • (2000) Sociological Methodology , pp. 165-200
    • Yuan, K.H.1    Bentler, P.M.2
  • 8
    • 37748999261 scopus 로고    scopus 로고
    • Missing data: A of neural network and expectation maximisation techniques
    • Nelwamondo, F.V., Mohamed, S., Marwala, T.: Missing data: A of neural network and expectation maximisation techniques. Current Science 93(11), 1514-1521 (2007).
    • (2007) Current Science , vol.93 , Issue.11 , pp. 1514-1521
    • Nelwamondo, F.V.1    Mohamed, S.2    Marwala, T.3
  • 9
    • 33846205588 scopus 로고    scopus 로고
    • Autoencoder networks for HIV classification
    • Betechuoh, B.L., Marwala, T., Tettey, T.: Autoencoder Networks for HIV Classification. Current Science 91(11), 1467-1473 (2006).
    • (2006) Current Science , vol.91 , Issue.11 , pp. 1467-1473
    • Betechuoh, B.L.1    Marwala, T.2    Tettey, T.3
  • 10
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau, G., Devroye, L., Lugosi, G.: Consistency of Random Forests and Other Averaging Classifiers. Journal of Machine Learning Research 9, 2015-2033 (2008).
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 12
    • 15944418607 scopus 로고    scopus 로고
    • Random forest similarity for protein-protein interaction prediction from multiple sources
    • Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources. In: Pacific Symposium on Biocomputing, vol. 10, pp. 531-542 (2005).
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 14
    • 0041382385 scopus 로고    scopus 로고
    • Department of Statistics, University of California Berkeley
    • Breiman, L., Cutler, A.: Random Forests. Department of Statistics, University of California Berkeley (2004).
    • (2004) Random Forests
    • Breiman, L.1    Cutler, A.2
  • 16
    • 84894290567 scopus 로고    scopus 로고
    • An introduction
    • John Wiley & Sons, Ltd. Chichester
    • Engelbrecht, A.P.: Computation Intelligence, an Introduction. John Wiley & Sons, Ltd., Chichester (2002).
    • (2002) Computation Intelligence
    • Engelbrecht, A.P.1
  • 19
    • 84902156141 scopus 로고    scopus 로고
    • Neuro fuzzy systems: Sate-of-the-art modeling techniques
    • Mira, J. Prieto, A.G. (eds.), LNCS, vol. 2084, Springer, Heidelberg
    • Abraham, A.: Neuro fuzzy systems: Sate-of-the-art modeling techniques. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 269-276. Springer, Heidelberg (2001).
    • (2001) IWANN 2001 , pp. 269-276
    • Abraham, A.1
  • 20
  • 22
    • 33845432310 scopus 로고    scopus 로고
    • Genetic algorithms
    • Imperial College of Science Technology and Medicine
    • Wong, H.: Genetic Algorithms. Surprise 96 Journal. Imperial College of Science Technology and Medicine (1996).
    • (1996) Surprise 96 Journal
    • Wong, H.1
  • 24
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random Forests. Machine Learning 45, 5-32 (2001).
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 25
    • 34547435898 scopus 로고    scopus 로고
    • On early stopping in gradient descent learning
    • Yuan, Y., Lorenzo, R., Andrea, C.: On Early Stopping in Gradient Descent Learning. Constructive Approximation 26(2), 289-315 (2007).
    • (2007) Constructive Approximation , vol.26 , Issue.2 , pp. 289-315
    • Yuan, Y.1    Lorenzo, R.2    Andrea, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.