메뉴 건너뛰기




Volumn 247, Issue , 2009, Pages 183-199

Metric learning for prototype-based classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70350225330     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-04003-0_8     Document Type: Article
Times cited : (23)

References (37)
  • 1
    • 40949141347 scopus 로고    scopus 로고
    • Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ
    • Alegre, E., Biehl, M., Petkov, N., Sanchez, L.: Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ. Computers in Biology and Medicine 38, 461-468 (2008)
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 461-468
    • Alegre, E.1    Biehl, M.2    Petkov, N.3    Sanchez, L.4
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural risks
    • Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural risks. Journal of Machine Learning Research 3, 463-481 (2002)
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-481
    • Bartlett, P.L.1    Mendelson, S.2
  • 3
    • 38449089802 scopus 로고    scopus 로고
    • Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning
    • Yin, H, Tino, P, Corchado, E, Byrne, W, Yao, X, eds, IDEAL 2007, Springer, Heidelberg
    • Biehl, M., Breitling, R., Li, Y.: Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 880-889. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4881 , pp. 880-889
    • Biehl, M.1    Breitling, R.2    Li, Y.3
  • 7
    • 56449089247 scopus 로고    scopus 로고
    • Monitoring technical systems with prototype based clustering
    • Verleysen, M, ed, D-side publications
    • Bojer, T., Hammer, B., Koers, C.: Monitoring technical systems with prototype based clustering. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks 2003, pp. 433-439. D-side publications (2003)
    • (2003) European Symposium on Artificial Neural Networks , pp. 433-439
    • Bojer, T.1    Hammer, B.2    Koers, C.3
  • 10
    • 70350224023 scopus 로고    scopus 로고
    • Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., Biehl,M.: Discriminative visualization by limited rank matrix learning. Machine Learning Reports MLR-03-2008 (2008), http://www.uni-leipzig.de/ ~compint/mlr/mlr_03_2008.pdf, ISSN:1865-3960
    • Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., Biehl,M.: Discriminative visualization by limited rank matrix learning. Machine Learning Reports MLR-03-2008 (2008), http://www.uni-leipzig.de/ ~compint/mlr/mlr_03_2008.pdf, ISSN:1865-3960
  • 14
    • 0010641201 scopus 로고    scopus 로고
    • Anisotropic noise injection for input variable relevance determination
    • Grandvalet, Y.: Anisotropic noise injection for input variable relevance determination. IEEE Transactions on Neural Networks 11(6), 1201-1212 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.6 , pp. 1201-1212
    • Grandvalet, Y.1
  • 16
  • 17
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21-44 (2005)
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 18
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15, 1059-1068 (2002)
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 21
    • 0030152722 scopus 로고    scopus 로고
    • Automated feature selection with distinction sensitive learning vector quantization
    • Pregenzer, M., Pfurtscheller, G., Flotzinger, D.: Automated feature selection with distinction sensitive learning vector quantization. Neurocomputing 11, 19-29 (1996)
    • (1996) Neurocomputing , vol.11 , pp. 19-29
    • Pregenzer, M.1    Pfurtscheller, G.2    Flotzinger, D.3
  • 22
    • 70350216104 scopus 로고    scopus 로고
    • Sato, A.S., Yamada, K.: An analysis of convergence in generalized LVQ. In: Niklasson, L., Boden, M., Ziemke, T. (eds.) ICANN 1998, pp. 172-176. Springer, Heidelberg (1998)
    • Sato, A.S., Yamada, K.: An analysis of convergence in generalized LVQ. In: Niklasson, L., Boden, M., Ziemke, T. (eds.) ICANN 1998, pp. 172-176. Springer, Heidelberg (1998)
  • 23
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • Tesauro, G, Touretzky, D, Leen, T, eds, MIT Press, Cambridge
    • Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423-429. MIT Press, Cambridge (1995)
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 423-429
    • Sato, A.S.1    Yamada, K.2
  • 24
    • 42049122152 scopus 로고    scopus 로고
    • Exploration of Mass-Spectrometric Data in Clinical Proteomics Using Learning Vector Quantization Methods
    • Schleif, F.-M., Hammer, B., Kostrzewa,M., Villmann, T.: Exploration of Mass-Spectrometric Data in Clinical Proteomics Using Learning Vector Quantization Methods. Briefings in Bioinformatics 9(2), 129-143 (2007)
    • (2007) Briefings in Bioinformatics , vol.9 , Issue.2 , pp. 129-143
    • Schleif, F.-M.1    Hammer, B.2    Kostrzewa, M.3    Villmann, T.4
  • 29
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589-1604 (2003)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 33
    • 0021518106 scopus 로고
    • A Theory of the Learnable
    • Valiant, L.: A Theory of the Learnable. Communications of the ACM 27(11), 1134-1142 (1984)
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1
  • 35
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • Villmann, T.,Merenyi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Networks 16(3-4), 389-403 (2003)
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 389-403
    • Villmann, T.1    Merenyi, E.2    Hammer, B.3
  • 36
    • 33745684650 scopus 로고    scopus 로고
    • Comparison of Relevance Learning Vector Quantization with other Metric Adaptive Classification Methods
    • Villmann, T., Schleif, F.-M., Hammer, B.: Comparison of Relevance Learning Vector Quantization with other Metric Adaptive Classification Methods. Neural Networks 19, 610-622 (2006)
    • (2006) Neural Networks , vol.19 , pp. 610-622
    • Villmann, T.1    Schleif, F.-M.2    Hammer, B.3
  • 37
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weiss, Y, Scholkopf, B, Platt, J, eds, MIT Press, Cambridge
    • Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: Weiss, Y., Scholkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 1473-1480. MIT Press, Cambridge (2006)
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1473-1480
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.