메뉴 건너뛰기




Volumn 5780 LNBI, Issue , 2009, Pages 67-78

Using higher-order dynamic bayesian networks to model periodic data from the circadian clock of arabidopsis thaliana

Author keywords

Arabidopsis Thaliana; Dynamic Bayesian Network; Gene Expression; Gene Regulatory Network

Indexed keywords

ARABIDOPSIS THALIANA; CIRCADIAN CLOCK; DYNAMIC BAYESIAN NETWORK; GENE REGULATORY NETWORK; GENE REGULATORY NETWORKS; HIGHER-ORDER DYNAMICS; TIME LAG;

EID: 70349858154     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04031-3_7     Document Type: Conference Paper
Times cited : (7)

References (18)
  • 1
    • 68349117241 scopus 로고    scopus 로고
    • Learning Bayesian network equivalence classes with ant colony optimization
    • Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research 35, 391-447 (2009)
    • (2009) Journal of Artificial Intelligence Research , vol.35 , pp. 391-447
    • Daly, R.1    Shen, Q.2
  • 3
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282 (2003)
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 4
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4(3), 228-235 (2003)
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 6
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71-79 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 7
    • 34548538013 scopus 로고    scopus 로고
    • Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
    • Geier, F., Timmer, J., Fleck, C.: Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 1, 11 (2007)
    • (2007) BMC Systems Biology , vol.1 , pp. 11
    • Geier, F.1    Timmer, J.2    Fleck, C.3
  • 10
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(suppl. 6), S9 (2007)
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Schlitt, T.1    Brazma, A.2
  • 11
    • 33745456764 scopus 로고    scopus 로고
    • Plant circadian rhythms
    • McClung, C.R.: Plant circadian rhythms. The Plant Cell 18, 792-803 (2006)
    • (2006) The Plant Cell , vol.18 , pp. 792-803
    • McClung, C.R.1
  • 12
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
    • Huang, Z., Lib, J., Su, H., Watts, G.S., Chen, H.: Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decision Support Systems 43(4), 1207-1225 (2007)
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Lib, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 13
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197-243 (1995)
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 15
    • 84899020081 scopus 로고    scopus 로고
    • On the Dirichlet prior and Bayesian regularization
    • In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS MIT Press, Cambridge
    • Steck, H., Jaakkola, T.S.: On the Dirichlet prior and Bayesian regularization. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 697-704. MIT Press, Cambridge (2003)
    • (2002) Advances in Neural Information Processing Systems , vol.15 , pp. 697-704
    • Steck, H.1    Jaakkola, T.S.2
  • 17
    • 33750072151 scopus 로고    scopus 로고
    • A Bayesian network scoring metric that is based on globally uniform parameter priors
    • In: Darwiche, A., Friedman, N. (eds.) Morgan Kaufmann, San Francisco
    • Kayaalp, M., Cooper, G.F.: A Bayesian network scoring metric that is based on globally uniform parameter priors. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002), pp. 251-258. Morgan Kaufmann, San Francisco (2002)
    • (2002) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002) , pp. 251-258
    • Kayaalp, M.1    Cooper, G.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.