-
1
-
-
68349117241
-
Learning Bayesian network equivalence classes with ant colony optimization
-
Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research 35, 391-447 (2009)
-
(2009)
Journal of Artificial Intelligence Research
, vol.35
, pp. 391-447
-
-
Daly, R.1
Shen, Q.2
-
3
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282 (2003)
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
4
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4(3), 228-235 (2003)
-
(2003)
Briefings in Bioinformatics
, vol.4
, Issue.3
, pp. 228-235
-
-
Kim, S.Y.1
Imoto, S.2
Miyano, S.3
-
5
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d'Alché Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl. 2), ii138-ii148 (2003)
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 2
-
-
Perrin, B.E.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
D'Alchébuc, F.6
-
6
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71-79 (2005)
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.D.2
-
7
-
-
34548538013
-
Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
-
Geier, F., Timmer, J., Fleck, C.: Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 1, 11 (2007)
-
(2007)
BMC Systems Biology
, vol.1
, pp. 11
-
-
Geier, F.1
Timmer, J.2
Fleck, C.3
-
8
-
-
33646510841
-
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock
-
Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., Millar, A.J.: FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. The Plant Cell 18, 639-650 (2006)
-
(2006)
The Plant Cell
, vol.18
, pp. 639-650
-
-
Edwards, K.D.1
Anderson, P.E.2
Hall, A.3
Salathia, N.S.4
Locke, J.C.5
Lynn, J.R.6
Straume, M.7
Smith, J.Q.8
Millar, A.J.9
-
9
-
-
33846050368
-
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana
-
Locke, J.C.W., Kozma-Bognár, L., Gould, P.D., Fehér, B., Kevei, É., Nagy, F., Turner, M.S., Hall, A., Millar, A.J.: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular Systems Biology 2(59) (2006)
-
(2006)
Molecular Systems Biology
, vol.2
, pp. 59
-
-
Locke, J.C.W.1
Kozma-Bognár, L.2
Gould, P.D.3
Fehér, B.4
Kevei, É.5
Nagy, F.6
Turner, M.S.7
Hall, A.8
Millar, A.J.9
-
10
-
-
45149101194
-
Current approaches to gene regulatory network modelling
-
Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(suppl. 6), S9 (2007)
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Schlitt, T.1
Brazma, A.2
-
11
-
-
33745456764
-
Plant circadian rhythms
-
McClung, C.R.: Plant circadian rhythms. The Plant Cell 18, 792-803 (2006)
-
(2006)
The Plant Cell
, vol.18
, pp. 792-803
-
-
McClung, C.R.1
-
12
-
-
34250013587
-
Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
-
Huang, Z., Lib, J., Su, H., Watts, G.S., Chen, H.: Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decision Support Systems 43(4), 1207-1225 (2007)
-
(2007)
Decision Support Systems
, vol.43
, Issue.4
, pp. 1207-1225
-
-
Huang, Z.1
Lib, J.2
Su, H.3
Watts, G.S.4
Chen, H.5
-
13
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197-243 (1995)
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
15
-
-
84899020081
-
On the Dirichlet prior and Bayesian regularization
-
In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS MIT Press, Cambridge
-
Steck, H., Jaakkola, T.S.: On the Dirichlet prior and Bayesian regularization. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 697-704. MIT Press, Cambridge (2003)
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 697-704
-
-
Steck, H.1
Jaakkola, T.S.2
-
16
-
-
70350678796
-
On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter
-
Silander, T., Kontkanen, P., Myllymaki, P.: On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2007 (2007)
-
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2007
, vol.2007
-
-
Silander, T.1
Kontkanen, P.2
Myllymaki, P.3
-
17
-
-
33750072151
-
A Bayesian network scoring metric that is based on globally uniform parameter priors
-
In: Darwiche, A., Friedman, N. (eds.) Morgan Kaufmann, San Francisco
-
Kayaalp, M., Cooper, G.F.: A Bayesian network scoring metric that is based on globally uniform parameter priors. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002), pp. 251-258. Morgan Kaufmann, San Francisco (2002)
-
(2002)
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002)
, pp. 251-258
-
-
Kayaalp, M.1
Cooper, G.F.2
|