메뉴 건너뛰기




Volumn 80, Issue 3, 2008, Pages 358-374

Translated poisson mixture model for stratification learning

Author keywords

Clustering; Density estimation; Dimension estimation; Manifold learning; Mixture models; Stratification learning; Translated poisson

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHLORINE COMPOUNDS; CLUSTERING ALGORITHMS; COMPUTER VISION; EDUCATION; ESTIMATION; IMAGE ANALYSIS; IMAGE PROCESSING; IMAGE SEGMENTATION; IMAGING TECHNIQUES; MIXTURES; MODAL ANALYSIS; PARAMETER ESTIMATION; POISSON EQUATION; STATISTICAL METHODS;

EID: 52449104800     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-008-0144-6     Document Type: Article
Times cited : (49)

References (37)
  • 2
    • 0032131450 scopus 로고    scopus 로고
    • Convergence of an EM-type algorithm for spatial clustering
    • 10
    • C. Ambroise G. Govaert 1998 Convergence of an EM-type algorithm for spatial clustering Pattern Recognition Letters 19 10 919 927
    • (1998) Pattern Recognition Letters , vol.19 , pp. 919-927
    • Ambroise, C.1    Govaert, G.2
  • 4
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Vancouver, Canada
    • Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in NIPS (Vol. 14). Vancouver, Canada.
    • (2002) Advances in NIPS , vol.14
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 85156243112 scopus 로고    scopus 로고
    • Charting a manifold
    • Vancouver, Canada
    • Brand, M. (2002). Charting a manifold. In Advances in NIPS (Vol. 16). Vancouver, Canada.
    • (2002) Advances in NIPS , vol.16
    • Brand, M.1
  • 9
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • 8
    • J. A. Costa A. O. Hero 2004 Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Transactions on Signal Processing 52 8 2210 2221
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 14
    • 34948906262 scopus 로고    scopus 로고
    • Segmenting motions of different types by unsupervised manifold clustering
    • Goh, A., & Vidal, R. (2007). Segmenting motions of different types by unsupervised manifold clustering. In Proceedings of CVPR.
    • (2007) Proceedings of CVPR
    • Goh, A.1    Vidal, R.2
  • 15
    • 85158056195 scopus 로고    scopus 로고
    • Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds
    • Vancouver, Canada
    • Haro, G., Randall, G., & Sapiro, G. (2006). Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds. In Advances in NIPS (Vol. 19). Vancouver, Canada.
    • (2006) Advances in NIPS , vol.19
    • Haro, G.1    Randall, G.2    Sapiro, G.3
  • 17
    • 38049135335 scopus 로고
    • Another interpretation of the em algorithm for mixture distributions
    • 2
    • R. Hathaway 1986 Another interpretation of the EM algorithm for mixture distributions Statistics and Probability Letters 4 2 53 56
    • (1986) Statistics and Probability Letters , vol.4 , pp. 53-56
    • Hathaway, R.1
  • 18
    • 5044226698 scopus 로고    scopus 로고
    • Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications
    • Huang, K., Ma, Y., & Vidal, R. (2004). Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In Proceedings of CVPR (pp. 631-638).
    • (2004) Proceedings of CVPR , pp. 631-638
    • Huang, K.1    Ma, Y.2    Vidal, R.3
  • 20
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • Vancouver, Canada
    • Kegl, B. (2002). Intrinsic dimension estimation using packing numbers. In Advances in NIPS (Vol. 14). Vancouver, Canada.
    • (2002) Advances in NIPS , vol.14
    • Kegl, B.1
  • 23
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • Vancouver, Canada
    • Levina, E., & Bickel, P. J. (2005). Maximum likelihood estimation of intrinsic dimension. In Advances in NIPS (Vol. 17). Vancouver, Canada.
    • (2005) Advances in NIPS , vol.17
    • Levina, E.1    Bickel, P.J.2
  • 26
    • 84880738109 scopus 로고    scopus 로고
    • Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting
    • Mordohai, P., & Medioni, G. (2005). Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting. In IJCAI (p. 798).
    • (2005) IJCAI , pp. 798
    • Mordohai, P.1    Medioni, G.2
  • 27
    • 84898934594 scopus 로고    scopus 로고
    • Grouping and dimensionality reduction by locally linear embedding
    • Vancouver, Canada
    • Polito, M., & Perona, P. (2002). Grouping and dimensionality reduction by locally linear embedding. In Advances in NIPS (Vol. 14). Vancouver, Canada.
    • (2002) Advances in NIPS , vol.14
    • Polito, M.1    Perona, P.2
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • 5500
    • S. T. Roweis L. K. Saul 2000 Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2323 2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 31
    • 33745937349 scopus 로고    scopus 로고
    • Manifold clustering
    • Souvenir, R., & Pless, R. (2005). Manifold clustering. In ICCV (pp. 648-653).
    • (2005) ICCV , pp. 648-653
    • Souvenir, R.1    Pless, R.2
  • 33
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • 5500
    • J. B. Tenenbaum V. de Silva J. C. Langford 2000 A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2319 2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 35
    • 5044234987 scopus 로고    scopus 로고
    • Generalized principal component analysis (GPCA)
    • Vidal, R., Ma, Y., & Piazzi, J. (2003). Generalized principal component analysis (GPCA). In Proceedings of CVPR (pp. 621-628).
    • (2003) Proceedings of CVPR , pp. 621-628
    • Vidal, R.1    Ma, Y.2    Piazzi, J.3
  • 37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.