메뉴 건너뛰기




Volumn 5519 LNCS, Issue , 2009, Pages 498-508

Stacking for ensembles of local experts in metabonomic applications

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC DETECTION; CROSS VALIDATION; DATA SETS; EXPERIMENTAL EVALUATION; LOCAL EXPERTS; METABONOMICS; OPTIMIZATION PROCEDURES; PROBABILISTIC OUTPUT; SAFETY PHARMACOLOGY; SPECTROSCOPIC DATA; TRAINING DATA;

EID: 70349316567     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02326-2_50     Document Type: Conference Paper
Times cited : (6)

References (19)
  • 1
    • 0036463681 scopus 로고    scopus 로고
    • Metabonomics: A platform for studying drug toxicity and gene function
    • Nicholson, J.K., et al.: Metabonomics: a platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery 1, 153-161 (2002)
    • (2002) Nature Reviews Drug Discovery , vol.1 , pp. 153-161
    • Nicholson, J.K.1
  • 2
    • 50049123227 scopus 로고    scopus 로고
    • NMR-based urine analysis in rats: Prediction of proximal tubule kidney toxicity and phospholipidosis
    • Lienemann, K., Plotz, T., Pestel, S.: NMR-based urine analysis in rats: Prediction of proximal tubule kidney toxicity and phospholipidosis. Journal of Pharmacological and Toxicological Methods 58, 41-49 (2008)
    • (2008) Journal of Pharmacological and Toxicological Methods , vol.58 , pp. 41-49
    • Lienemann, K.1    Plotz, T.2    Pestel, S.3
  • 3
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241-259 (1992)
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 4
    • 7344256122 scopus 로고    scopus 로고
    • 1H NMR spectroscopy of urine combined with pattern recognition
    • 1H NMR spectroscopy of urine combined with pattern recognition. NMR in Biomedicine 11, 235-244 (1998)
    • (1998) NMR in Biomedicine , vol.11 , pp. 235-244
    • Holmes, E.1
  • 6
    • 0142039110 scopus 로고    scopus 로고
    • NMR-based metabonomic toxicity classification: Hierarchical cluster analysis and k-nearest-neighbour approaches
    • Beckonert, O., et al.: NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Analytica Chimica Acta 490, 3-15 (2003)
    • (2003) Analytica Chimica Acta , vol.490 , pp. 3-15
    • Beckonert, O.1
  • 7
    • 0142134307 scopus 로고    scopus 로고
    • Toxicity classification from metabonomic data using a density superposition approach: CLOUDS
    • Ebbels, T., et al.: Toxicity classification from metabonomic data using a density superposition approach: CLOUDS. Analytica Chimica Acta 490, 109-122 (2003)
    • (2003) Analytica Chimica Acta , vol.490 , pp. 109-122
    • Ebbels, T.1
  • 8
    • 0037444362 scopus 로고    scopus 로고
    • Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project
    • Lindon, J.C., et al.: Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology 187, 137-146 (2003)
    • (2003) Toxicology and Applied Pharmacology , vol.187 , pp. 137-146
    • Lindon, J.C.1
  • 9
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109-118 (1990)
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 10
    • 37249026123 scopus 로고    scopus 로고
    • Lienemann, K., Plotz, T., Fink, G.A.: On the application of SVM-Ensembles based on adapted random subspace sampling for automatic classification of NMR data. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, 4472, pp. 42-51. Springer, Heidelberg (2007)
    • Lienemann, K., Plotz, T., Fink, G.A.: On the application of SVM-Ensembles based on adapted random subspace sampling for automatic classification of NMR data. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 42-51. Springer, Heidelberg (2007)
  • 11
    • 58349094980 scopus 로고    scopus 로고
    • Automatic classification of NMR spectra by ensembles of local experts
    • Structural, Syntactic, and Statistical Pattern Recognition, Springer, Heidelberg
    • Lienemann, K., Plotz, T., Fink, G.A.: Automatic classification of NMR spectra by ensembles of local experts. In: Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 790-800. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5342 , pp. 790-800
    • Lienemann, K.1    Plotz, T.2    Fink, G.A.3
  • 12
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L.: Stacked regressions. Machine Learning 24, 49-64 (1996)
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 15
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press, Cambridge
    • Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61-74. MIT Press, Cambridge (1999)
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 16
    • 34548160247 scopus 로고    scopus 로고
    • A note on platt's probabilistic outputs for support vector machines
    • Lin, H.T., Lin, C.J., Weng, R.: A note on platt's probabilistic outputs for support vector machines. Machine Learning 68, 267-276 (2007)
    • (2007) Machine Learning , vol.68 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.3
  • 17
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of the T4 phage lysozyme
    • Matthews, B.W.: Comparison of the predicted and observed secondary structure of the T4 phage lysozyme. Biochimica et Biophysica Acta 405, 442-451 (1975)
    • (1975) Biochimica et Biophysica Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.