메뉴 건너뛰기




Volumn , Issue , 2008, Pages 299-308

On effective presentation of graph patterns: A structural representative approach

Author keywords

Frequent graph pattern; Smoothing clustering; Structural representative

Indexed keywords

CARDINALITIES; EMPIRICAL STUDIES; ERROR TOLERANCE; FAST ALGORITHMS; FREQUENT GRAPH PATTERN; FREQUENT PATTERNS; GRAPH DATA; GRAPH PATTERNS; INHERENT NOISE; KNOWLEDGE DISCOVERY; REAL APPLICATIONS; REAL DATA SETS; SIMILAR PATTERN; SMOOTHING-CLUSTERING; STRUCTURAL REPRESENTATIVE; STRUCTURAL REQUIREMENTS;

EID: 70349250360     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1458082.1458124     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 1
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD Conference, pages 85-93, 1998.
    • (1998) SIGMOD Conference , pp. 85-93
    • Bayardo, R.J.1
  • 3
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, pages 51-58, 2002.
    • (2002) ICDM , pp. 51-58
    • Borgelt, C.1    Berthold, M.R.2
  • 4
    • 49749102365 scopus 로고    scopus 로고
    • gapprox: Mining frequent approximate patterns from a massive network
    • C. Chen, X. Yan, F. Zhu, and J. Han. gapprox: Mining frequent approximate patterns from a massive network. In ICDM, pages 445-450, 2007.
    • (2007) ICDM , pp. 445-450
    • Chen, C.1    Yan, X.2    Zhu, F.3    Han, J.4
  • 6
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. In ICDM, pages 211-218, 2002.
    • (2002) ICDM , pp. 211-218
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 7
    • 49749107567 scopus 로고    scopus 로고
    • Origami: Mining representative orthogonal graph patterns
    • M. Hasan, V. Chaoji, S. Salem, J. Besson, and M. Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153-162, 2007.
    • (2007) ICDM , pp. 153-162
    • Hasan, M.1    Chaoji, V.2    Salem, S.3    Besson, J.4    Zaki, M.5
  • 9
    • 12244294770 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent subgraphs from graph databases. In KDD, pages 581-586, 2004.
    • (2004) KDD , pp. 581-586
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 11
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 12
    • 70349256923 scopus 로고    scopus 로고
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In SDM, 2004.
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In SDM, 2004.
  • 13
    • 52649155498 scopus 로고    scopus 로고
    • Summarizing graph patterns
    • Y. Liu, J. Li, and H. Gao. Summarizing graph patterns. In ICDE, pages 903-912, 2008.
    • (2008) ICDE , pp. 903-912
    • Liu, Y.1    Li, J.2    Gao, H.3
  • 14
    • 9444289944 scopus 로고    scopus 로고
    • The pattern ordering problem
    • T. Mielikäinen and H. Mannila. The pattern ordering problem. In PKDD, pages 327-338, 2003.
    • (2003) PKDD , pp. 327-338
    • Mielikäinen, T.1    Mannila, H.2
  • 15
    • 0036709106 scopus 로고    scopus 로고
    • Clarans: A method for clustering objects for spatial data mining
    • R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003-1016, 2002.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 16
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In KDD, pages 647-652, 2004.
    • (2004) KDD , pp. 647-652
    • Nijssen, S.1    Kok, J.N.2
  • 17
    • 84911977993 scopus 로고    scopus 로고
    • Discovering frequent closed itemsets for association rules
    • N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In ICDT, pages 398-416, 1999.
    • (1999) ICDT , pp. 398-416
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3    Lakhal, L.4
  • 19
    • 33749579068 scopus 로고    scopus 로고
    • Summarizing itemset patterns using probabilistic models
    • C. Wang and S. Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, pages 730-735, 2006.
    • (2006) KDD , pp. 730-735
    • Wang, C.1    Parthasarathy, S.2
  • 20
    • 33745458995 scopus 로고    scopus 로고
    • Mining compressed frequent-pattern sets
    • D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In VLDB, pages 709-720, 2005.
    • (2005) VLDB , pp. 709-720
    • Xin, D.1    Han, J.2    Yan, X.3    Cheng, H.4
  • 21
    • 32344439809 scopus 로고    scopus 로고
    • Summarizing itemset patterns: A profile-based approach
    • X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a profile-based approach. In KDD, pages 314-323, 2005.
    • (2005) KDD , pp. 314-323
    • Yan, X.1    Cheng, H.2    Han, J.3    Xin, D.4
  • 22
    • 77952334885 scopus 로고    scopus 로고
    • Closegraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD, pages 286-295, 2003.
    • (2003) KDD , pp. 286-295
    • Yan, X.1    Han, J.2
  • 23
    • 3142736597 scopus 로고    scopus 로고
    • Graph indexing: A frequent structure-based approach
    • X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In SIGMOD Conference, pages 335-346, 2004.
    • (2004) SIGMOD Conference , pp. 335-346
    • Yan, X.1    Yu, P.S.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.