메뉴 건너뛰기




Volumn , Issue , 2007, Pages 445-450

gApprox: Mining frequent approximate patterns from a massive network

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL NETWORKS; COMPLEX STRUCTURES; DATA MINING METHODS; EMPIRICAL STUDIES; GRAPH MINING; INHERENT NOISE; INTERNATIONAL CONFERENCES; KNOWLEDGE DISCOVERY; MINING PROCESSING; NETWORK PATTERNS; NEW APPLICATIONS; NOVEL TECHNIQUES; OF GRAPHS; PATTERN SPACE; PROTEIN-PROTEIN INTERACTION NETWORK; SOCIAL NETWORKS; STRUCTURAL DATA; SYNTHETIC DATA SETS;

EID: 49749102365     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.36     Document Type: Conference Paper
Times cited : (74)

References (10)
  • 1
    • 33749543885 scopus 로고    scopus 로고
    • dissecting genome-wide protein-protein interactions with meso-scale network motifs
    • J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng. Nemofinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In KDD, pages 106-115, 2006.
    • (2006) KDD , pp. 106-115
    • Chen, J.1    Hsu, W.2    Lee, M.-L.3    Nemofinder, S.-K.N.4
  • 2
    • 3142716665 scopus 로고    scopus 로고
    • Thirty years of graph matching in pattern recognition
    • D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recognition. IJPRAI, 18(3):265-298, 2004.
    • (2004) IJPRAI , vol.18 , Issue.3 , pp. 265-298
    • Conte, D.1    Foggia, P.2    Sansone, C.3    Vento, M.4
  • 3
    • 26444593028 scopus 로고    scopus 로고
    • Pairwise local alignment of protein interaction networks guided by models of evolution
    • M. Koyutürk, A. Grama, and W. Szpankowski. Pairwise local alignment of protein interaction networks guided by models of evolution. In RECOMB, pages 48-65, 2005.
    • (2005) RECOMB , pp. 48-65
    • Koyutürk, M.1    Grama, A.2    Szpankowski, W.3
  • 4
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 5
    • 27944453480 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data Min. Knowl. Discov., 11(3):243-271, 2005.
    • (2005) Data Min. Knowl. Discov , vol.11 , Issue.3 , pp. 243-271
    • Kuramochi, M.1    Karypis, G.2
  • 6
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In KDD, pages 647-652, 2004.
    • (2004) KDD , pp. 647-652
    • Nijssen, S.1    Kok, J.N.2
  • 7
    • 33749538851 scopus 로고    scopus 로고
    • Frequency concepts and pattern detection for the analysis of motifs in networks
    • 3 (LNBI 3737):89-104
    • F. Schreiber and H. Schwöbbermeyer. Frequency concepts and pattern detection for the analysis of motifs in networks. Transactions on Computational Systems Biology, 3 (LNBI 3737):89-104, 2005.
    • (2005) Transactions on Computational Systems Biology
    • Schreiber, F.1    Schwöbbermeyer, H.2
  • 8
    • 33846662155 scopus 로고    scopus 로고
    • Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel. SAGA: a subgraph matching tool for biological graphs. Bioinformatics, pages 232-239, 2006.
    • Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel. SAGA: a subgraph matching tool for biological graphs. Bioinformatics, pages 232-239, 2006.
  • 10
    • 78149333073 scopus 로고    scopus 로고
    • gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.