-
2
-
-
33746248438
-
-
J. T. Mohr, D. C. Behenna, A. M. Harned, B. M. Stoltz, Angew. Chem. 2005, 117, 7084-7087;
-
(2005)
, vol.117
, pp. 7084-7087
-
-
Mohr, J.T.1
Behenna, D.C.2
Harned, A.M.3
Stoltz, B.M.4
-
3
-
-
27544451620
-
-
Angew. Chem. Int. Ed. 2005, 44, 6924-6927;
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 6924-6927
-
-
-
5
-
-
69549132274
-
-
M. Seto, J. L. Roizen, B. M. Stoltz, Angew. Chem. 2008, 120, 6979-6982;
-
(2008)
, vol.120
, pp. 6979-6982
-
-
Seto, M.1
Roizen, J.L.2
Stoltz, B.M.3
Chem, Angew.4
-
6
-
-
52449089307
-
-
d) Angew. Chem. Int. Ed. 2008, 47, 6873-6876.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 6873-6876
-
-
-
7
-
-
70349967971
-
-
2O (0.55 equiv) to a typical reaction results in only a marginal decrease in the yield and ee value of the product (< 2% in each case); see the Supporting Information for details
-
For example, the addition of H2O (0.55 equiv) to a typical reaction results in only a marginal decrease in the yield and ee value of the product (< 2% in each case); see the Supporting Information for details.
-
-
-
-
8
-
-
34848926246
-
-
J. A. Keith, D. C. Behenna, J. T. Mohr, S. Ma, S. C. Marinescu, J. Oxgaard, B. M. Stoltz, W. A. Goddard III, J. Am. Chem. Soc. 2007, 129, 11876-11877.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 11876-11877
-
-
Keith, J.A.1
Behenna, D.C.2
Mohr, J.T.3
Ma, S.4
Marinescu, S.C.5
Oxgaard, J.6
Stoltz, B.M.7
Goddard Iii, W.A.8
-
9
-
-
70349969941
-
-
To corroborate our comparison of all three variants of the allylic alkylation reaction, we carried out analogous 31P NMR spectroscopic experiments for the equivalent conversion of allyl enol carbonate and silyl enol ether substrates into ketone 4 and obtained similar results.[6]
-
To corroborate our comparison of all three variants of the allylic alkylation reaction, we carried out analogous 31P NMR spectroscopic experiments for the equivalent conversion of allyl enol carbonate and silyl enol ether substrates into ketone 4 and obtained similar results.[6]
-
-
-
-
10
-
-
70349968226
-
-
At 24°C, the half-life, t1/2, of carboxylate 1 in [D8]THF is 7.3 min
-
At 24°C, the half-life, t1/2, of carboxylate 1 in [D8]THF is 7.3 min.
-
-
-
-
11
-
-
70349971894
-
-
See the Supporting Information for details
-
See the Supporting Information for details.
-
-
-
-
12
-
-
0012292237
-
-
1-allyl Pd complexes, see
-
The related complex [(i'Pr-phox)Pd(diphenylallyl)Cl] displays a similar four-coordinate arrangement with an ν1-allylic unit. For this complex and a discussion of other, rare ν1-allyl Pd complexes, see: M. Kollmar, G. Helmchen, Organometallics 2002, 21, 4771-4775.
-
(2002)
Organometallics
, vol.21
, pp. 4771-4775
-
-
Kollmar, M.1
Helmchen, G.2
-
13
-
-
0035914628
-
-
For comprehensive discussions see
-
a) For comprehensive discussions see M. Kollmar, B. Goldfuss, M. Reggelin, F. Rominger, G. Helmchen, Chem. Eur. J. 2001, 7, 4913-4927;
-
(2001)
Chem. Eur. J.
, vol.7
, pp. 4913-4927
-
-
Kollmar, M.1
Goldfuss, B.2
Reggelin, M.3
Rominger, F.4
Helmchen, G.5
-
14
-
-
0031577805
-
-
b) S. Liu, J. F. K. Miiller, M. Neuburger, S. Schaff- ner, M. Zehnder, J. Organomet. Chem. 1997, 549, 283-293.
-
(1997)
J. Organomet. Chem.
, vol.549
, pp. 283-293
-
-
Liu, S.1
Miiller, J.F.K.2
Neuburger, M.3
Schaffner, S.4
Zehnder, M.5
-
15
-
-
0033579123
-
-
Reported examples of transition-metal complexes with a μ- bound allyl group cis to a carboxylate ligand are limited to a single ruthenium complex and a single rhodium complex, both of which were characterized by other methods; see
-
a) J. G. Planas, T. Marumo, Y. Ichikawa, M. Hirano, S. Komiya, J. Mol. Catal. A 1999, 147, 137-154;
-
(1999)
J. Mol. Catal. A
, vol.147
, pp. 137-154
-
-
Planas, J.G.1
Marumo, T.2
Ichikawa, Y.3
Hirano, M.4
Komiya, S.5
-
17
-
-
47249151303
-
-
a) É. Bélanger, C. Houzé, N. Guimond, K. Cantin, J.-F. Paquin, Chem. Commun. 2008, 3251-3253;
-
(2008)
Chem. Commun.
, pp. 3251-3253
-
-
Bélange, E.1
Houzé, C.2
Guimond, N.3
Cantin, K.4
Paquin, J.-F.5
-
18
-
-
33846840892
-
-
b) É. Bélanger, K. Cantin, O. Messe, M. Tremblay, J.-F. Paquin, J. Am. Chem. Soc. 2007, 129, 1034-1035;
-
(2007)
Am. Chem. Soc.
, vol.129
, pp. 1034-1035
-
-
Bélanger, E.1
Cantin, K.2
Messe, O.3
Tremblay, M.4
Paquin, J.J.-F.5
-
19
-
-
58249097141
-
-
S. R. Waetzig, D. K. Rayabarapu, J. D. Weaver, J. A. Tunge, Angew. Chem. 2006, 118, 5099-5102;
-
(2006)
Angew. Chem.
, vol.118
, pp. 5099-5102
-
-
Waetzig, S.R.1
Rayabarapu, D.K.2
Weaver, J.D.3
Tunge, J.A.4
-
21
-
-
33747884493
-
-
B. M. Trost, R. N. Bream, J. Xu, Angew. Chem. 2006, 118, 3181-3184;
-
(2006)
Angew. Chem
, vol.118
, pp. 3181-3184
-
-
Trost, B.M.1
Bream, R.N.2
Xu, J.3
-
22
-
-
33746191949
-
-
d) Angew. Chem. Int. Ed. 2006, 45, 3109-3112;
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 3109-3112
-
-
-
23
-
-
33746248436
-
-
M. Nakamura, A. Hajra, K. Endo, E. Nakamura, Angew. Chem. 2005, 117, 7414-7417;
-
(2005)
Angew. Chem.
, vol.117
, pp. 7414-7417
-
-
Nakamura, M.1
Hajra, A.2
Endo, K.3
Nakamura, E.4
-
24
-
-
27844517990
-
-
e) Angew. Chem. Int. Ed. 2005, 44, 7248-7251;
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 7248-7251
-
-
-
27
-
-
0038327985
-
-
b) J.-E. Backvall, R. B. Hopkins, H. Grennberg, M. M. Mader, A. K. Awasthi, J. Am. Chem. Soc. 1990, 112, 5160-5166.
-
(1990)
J. Am. Chem. Soc
, vol.112
, pp. 5160-5166
-
-
Backvall, J.-E.1
Hopkins, R.B.2
Grennberg, H.3
Mader, M.M.4
Awasthi, A.K.5
-
29
-
-
0025356808
-
-
b) S. Hansson, A. Heumann, T. Rein, B. Åkermark, J. Org. Chem. 1990, 55, 975-984;
-
(1990)
J. Org. Chem.
, vol.55
, pp. 975-984
-
-
Hansson, S.1
Heumann, A.2
Rein, T.3
Åkermark, B.4
-
30
-
-
0000698432
-
-
c) S. E. Byström, E. M. Larsson, B. Åkermark, J. Org. Chem. 1990, 55, 5674 - 5675;
-
(1990)
J. Org. Chem.
, vol.55
, pp. 5674-5675
-
-
Byström, S.E.1
Larsson, E.M.2
Åkermark, B.3
-
31
-
-
0001039476
-
-
d) B. Åkermark, S. Hansson, T. Rein, J. Vågberg, A. Heumann, J.-E. Bäckvall, J. Organomet. Chem. 1989, 369, 433-444.
-
(1989)
Organomet. Chem.
, vol.369
, pp. 433-444
-
-
Åkermark, B.1
Hansson, S.2
Rein, T.3
Vågberg, J.4
Heumann, A.5
Bäckvall, J.J.-E.6
-
32
-
-
26944488411
-
-
J.-E. Bäckvall, S. E. Byström, R. E. Nordberg, J. Org. Chem. 1984, 49, 4619-4631.
-
(1984)
J. Org. Chem.
, vol.49
, pp. 4619-4631
-
-
Bäckvall, J.-E.1
Byström, S.E.2
Nordberg, R.E.3
-
33
-
-
0347416650
-
-
3rf-allylic Pd, Pt, and Ni complexes with noncoordinating trifluoroacetate and bicarbonate counterions, see
-
a) For structures of ν3rf-allylic Pd, Pt, and Ni complexes with noncoordinating trifluoroacetate and bicarbonate counterions, see: L. Böttcher, A. Scholz, D. Walther, N. Weisbach, H. Görls, Z. Anorg. Allg. Chem. 2003, 629, 2103 - 2112;
-
(2003)
Z. Anorg. Allg. Chem.
, vol.629
, pp. 2103-2112
-
-
Böttcher, L.1
Scholz, A.2
Walther, D.3
Weisbach, N.4
Görls, H.5
-
34
-
-
33748488859
-
-
b) A. Dervisi, P. G. Edwards, P. D. Newman, R. P. Tooze, S. J. Coles, M. B. Hursthouse, J. Chem. Soc. Dalton Trans. 1999,1113-1120;
-
(1999)
J. Chem. Soc. Dalton Trans.
, pp. 1113-1120
-
-
Dervisi, A.1
Edwards, P.G.2
Newman, P.D.3
Tooze, R.P.4
Coles, S.J.5
Hursthouse, M.B.6
-
35
-
-
0037662262
-
-
c) V. Jacob, T. J. R. Weakley, M. M. Haley, Organometallics 2002, 21, 5394-5400;
-
(2002)
Organometallics
, vol.21
, pp. 5394-5400
-
-
Jacob, V.1
Weakley, T.J.R.2
Haley, M.M.3
-
36
-
-
0037051616
-
-
d) J. Pawlas, Y. Nakao, M. Kawatsura, IF Hartwig, J. Am. Chem. Soc. 2002, 124, 3669 - 3679;
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 3669-3679
-
-
Pawlas, J.1
Nakao, Y.2
Kawatsura, M.3
Hartwig, I.F.4
-
37
-
-
69549148229
-
-
e) F. Ozawa, T.-i. Son, S. Ebina, K. Osakada, A. Yamamoto, Organometallics 1992, 11, 111-116.
-
(1992)
Organometallics
, vol.11
, pp. 111-116
-
-
Ozawa, F.1
Son, T.-I.2
Ebina, S.3
Osakada, K.4
Yamamoto, A.5
-
38
-
-
55549096037
-
-
a) Neutral ν2-alkenyl complexes have been postulated previously to be long-lived states prior to oxidative addition in related allylic alkylation reactions. It has also been assumed that the product of oxidative addition leads directly to a cationic rf-allyl complex. For examples, see: L. A. Evans, N. Fey, J. N. Harvey, D. Hose, G. C. Lloyd-Jones, P. Murray, A. G. Orpen, R. Osborne, G. J. J. Owen-Smith, M. Purdie, J. Am. Chem. Soc. 2008, 130, 14471-14473;
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14471-14473
-
-
Evans, L.A.1
Fey, N.2
Harvey, J.N.3
Hose, D.4
Lloyd-Jones, G.C.5
Murray, P.6
Orpen, A.G.7
Osborne, R.8
Owen-Smith, G.J.J.9
Purdie, M.10
-
39
-
-
0035896231
-
-
b) C. Amatore, S. Gamez, A. Jutand, Chem. Eur. J. 2001, 7, 1273-1280.
-
(2001)
Chem. Eur. J.
, vol.7
, pp. 1273-1280
-
-
Amatore, C.1
Gamez, S.2
Jutand, A.3
-
40
-
-
70349972121
-
-
The enantioselectivity of the reaction to produce ketone 4 is not affected by the presence of dba (3.0 equiv) in solution
-
The enantioselectivity of the reaction to produce ketone 4 is not affected by the presence of dba (3.0 equiv) in solution.
-
-
-
|