-
1
-
-
0003616618
-
-
Cornils, B, Herrmann, W. A, Eds, Wiley-VCH: Weinheim, Germany
-
(a) Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes; Cornils, B., Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002.
-
(2002)
Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes
-
-
-
2
-
-
0003445429
-
-
Jacobsen, E. N, Pfaltz, A, Yamamoto, H, Eds, Springer: New York
-
(b) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999.
-
(1999)
Comprehensive Asymmetric Catalysis
-
-
-
3
-
-
0000687774
-
-
Jacobsen, E. N, Pfaltz, A, Yamamoto, H, Eds, Springer: New York
-
(c) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York 1999; Vol. 2, pp 833-884.
-
(1999)
Comprehensive Asymmetric Catalysis
, vol.2
, pp. 833-884
-
-
Pfaltz, A.1
Lautens, M.2
-
7
-
-
0030853206
-
-
(c) Steinhagen, H.; Reggelin, M.; Helmchen, G. Angew. Chem., Int. Ed. 1997, 36, 2108-2110.
-
(1997)
Angew. Chem., Int. Ed
, vol.36
, pp. 2108-2110
-
-
Steinhagen, H.1
Reggelin, M.2
Helmchen, G.3
-
11
-
-
4344566130
-
-
(g) Trost, B. M. J. Org. Chem. 2004, 69, 5813-5837.
-
(2004)
J. Org. Chem
, vol.69
, pp. 5813-5837
-
-
Trost, B.M.1
-
12
-
-
0003544583
-
-
Ojima, I, Ed, Wiley-VCH: New York
-
(h) Trost, B. M.; Lee, C. In Catalytic Asymmetrie Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 593-649.
-
(2000)
Catalytic Asymmetrie Synthesis
, pp. 593-649
-
-
Trost, B.M.1
Lee, C.2
-
13
-
-
0010357262
-
-
(i) Bäckvall, J.-E.; Nordberg, R. E.; Vågberg, J. Tetrahedron Lett. 1983, 24, 411-412.
-
(1983)
Tetrahedron Lett
, vol.24
, pp. 411-412
-
-
Bäckvall, J.-E.1
Nordberg, R.E.2
Vågberg, J.3
-
14
-
-
34848853062
-
-
Werner, H, Schreier, P, Eds, Vieweg Verlag: Wiesbaden, Germany
-
(j) Helmchen, G.; Steinhagen, H.; Reggelin, M.; Kudis, S. In Selective Reactions of Metal-Activated Molecules; Werner, H., Schreier, P., Eds.; Vieweg Verlag: Wiesbaden, Germany, 1998; pp 105-115.
-
(1998)
Selective Reactions of Metal-Activated Molecules
, pp. 105-115
-
-
Helmchen, G.1
Steinhagen, H.2
Reggelin, M.3
Kudis, S.4
-
15
-
-
0001327455
-
-
Prochiral nucleophile studies: (a) Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113-120.
-
Prochiral nucleophile studies: (a) Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113-120.
-
-
-
-
17
-
-
0141630550
-
-
(c) Kuwano, R.; Uchida, K.; Ito, Y. Org. Lett. 2003, 5, 2177-2179.
-
(2003)
Org. Lett
, vol.5
, pp. 2177-2179
-
-
Kuwano, R.1
Uchida, K.2
Ito, Y.3
-
18
-
-
0000797812
-
-
(d) Sawamura, M.; Nagata, H.; Sakamoto, H.; Ho, Y. J. Am. Chem. Soc. 1992, 114, 2586-2592.
-
(1992)
J. Am. Chem. Soc
, vol.114
, pp. 2586-2592
-
-
Sawamura, M.1
Nagata, H.2
Sakamoto, H.3
Ho, Y.4
-
21
-
-
34848857414
-
-
See Supporting Information. For most substrates, the optimal solvent was THF (yield = 96%, ee = 88% for product (S)-2); however, the reaction also performed surprisingly well in a variety of nonpolar solvents, including benzene (yield = 99%, ee = 88% for product (S)-2).
-
See Supporting Information. For most substrates, the optimal solvent was THF (yield = 96%, ee = 88% for product (S)-2); however, the reaction also performed surprisingly well in a variety of nonpolar solvents, including benzene (yield = 99%, ee = 88% for product (S)-2).
-
-
-
-
22
-
-
34848839640
-
-
We note that substituted allyl fragments typically used as stereochemical probes for asymmetric allylation reactions are unsuitable for our catalyst system. See Supporting Information for details
-
We note that substituted allyl fragments typically used as stereochemical probes for asymmetric allylation reactions are unsuitable for our catalyst system. See Supporting Information for details.
-
-
-
-
23
-
-
27544451620
-
-
Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2005, 44, 6924-6927.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 6924-6927
-
-
Mohr, J.T.1
Behenna, D.C.2
Harned, A.M.3
Stoltz, B.M.4
-
24
-
-
34848922509
-
-
See Supporting Information. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 245187.
-
See Supporting Information. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 245187.
-
-
-
-
25
-
-
34848818568
-
-
solv is the energy associated with placing a gas-phase molecule in a solvent continuum and can be added to ΔE values to obtain solvent-phase results. Other calculation results are in the Supporting Information.
-
solv is the energy associated with placing a gas-phase molecule in a solvent continuum and can be added to ΔE values to obtain solvent-phase results. Other calculation results are in the Supporting Information.
-
-
-
-
26
-
-
34848911372
-
-
Calculations are on 82-atom systems with B3LYP hybrid DFT and mixed basis set geometries (LACVP** on atoms shown in Figure 3 and the MIDI! basis set on all other atoms, Single-point energies are calculated with the LACV3P**, basis set. In addition to electronic energy and thermodynamic contributions, we considered single-point solvent effects for THF (probe radius, 2.527 Å, ∈, 7.52) using the Jaguar self-consistent Poisson-Boltzmann solver (ref 12) and the LACV3P** basis set. Computational studies by our group show that this method leads to sufficiently accurate reaction barrier heights for large organometallic complexes, including those of palladium (ref 13, Single-point control calculations were carried out at these geometries with the PBE (ref 14) pure density functional DFT and the LACV3P**, basis set, leading to differences between critical barriers with rms, 1.2 kcal/mol
-
Calculations are on 82-atom systems with B3LYP hybrid DFT and mixed basis set geometries (LACVP** on atoms shown in Figure 3 and the MIDI! basis set on all other atoms). Single-point energies are calculated with the LACV3P**++ basis set. In addition to electronic energy and thermodynamic contributions, we considered single-point solvent effects for THF (probe radius = 2.527 Å, ∈ = 7.52) using the Jaguar self-consistent Poisson-Boltzmann solver (ref 12) and the LACV3P** basis set. Computational studies by our group show that this method leads to sufficiently accurate reaction barrier heights for large organometallic complexes, including those of palladium (ref 13). Single-point control calculations were carried out at these geometries with the PBE (ref 14) pure density functional DFT and the LACV3P**++ basis set, leading to differences between critical barriers with rms = 1.2 kcal/mol.
-
-
-
-
27
-
-
0030180875
-
-
(a) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775-11788.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 11775-11788
-
-
Marten, B.1
Kim, K.2
Cortis, C.3
Friesner, R.A.4
Murphy, R.B.5
Ringnalda, M.N.6
Sitkoff, D.7
Honig, B.8
-
28
-
-
0000304948
-
-
(b) Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard, W. A., III; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875-11882.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 11875-11882
-
-
Tannor, D.J.1
Marten, B.2
Murphy, R.3
Friesner, R.A.4
Sitkoff, D.5
Nicholls, A.6
Ringnalda, M.7
Goddard III, W.A.8
Honig, B.9
-
29
-
-
33644947345
-
-
(a) Keith, J. A.; Oxgaard, J.; Goddard, W. A., III. J. Am. Chem. Soc. 2006, 128, 3132-3133.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 3132-3133
-
-
Keith, J.A.1
Oxgaard, J.2
Goddard III, W.A.3
-
30
-
-
25444454085
-
-
(b) Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W. A., III. J. Am. Chem. Soc. 2005, 127, 13172-13179.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13172-13179
-
-
Keith, J.M.1
Nielsen, R.J.2
Oxgaard, J.3
Goddard III, W.A.4
-
32
-
-
4243943295
-
-
(a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
-
(1996)
Phys. Rev. Lett
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
33
-
-
85028484606
-
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. (erratum) 1997, 78, 1396.
-
(b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. (erratum) 1997, 78, 1396.
-
-
-
-
34
-
-
34848835213
-
-
Jaguar, version 6.5; Schrödinger, LLC, New York, 2005
-
Jaguar, version 6.5; Schrödinger, LLC, New York, 2005.
-
-
-
-
35
-
-
33845471185
-
-
Lutz, R. P. Chem. Rev. 1984, 84, 205-247.
-
(1984)
Chem. Rev
, vol.84
, pp. 205-247
-
-
Lutz, R.P.1
-
36
-
-
34848906618
-
-
Calculations on a non-oxy analogue of this mechanism were first presented in ref 18. The transition state for the three-membered ring is very high, +46.9 in gas phase and +51.9 kcal/mol in solvent. The explanation for high barriers of C-C reductive couplings from Pd(II) is discussed in ref 19.
-
Calculations on a non-oxy analogue of this mechanism were first presented in ref 18. The transition state for the three-membered ring is very high, +46.9 in gas phase and +51.9 kcal/mol in solvent. The explanation for high barriers of C-C reductive couplings from Pd(II) is discussed in ref 19.
-
-
-
-
37
-
-
0037119305
-
-
Méndez, M.; Cuerva, J. M.; Gómez-Bengoa, E.; Cárdenas, D. J.; Echavarren, A. M. Chem. - Eur. J. 2002, 8, 3620-3628.
-
(2002)
Chem. - Eur. J
, vol.8
, pp. 3620-3628
-
-
Méndez, M.1
Cuerva, J.M.2
Gómez-Bengoa, E.3
Cárdenas, D.J.4
Echavarren, A.M.5
|