-
1
-
-
0032377357
-
'exact' for interval estimation of binomial proportions
-
Agresti, A. and Coull, B. (1998). Approximate is better than 'exact' for interval estimation of binomial proportions. Amer. Statist. 52, 119-126.
-
(1998)
Amer. Statist
, vol.52
, pp. 119-126
-
-
Agresti, A.1
Coull, B.2
-
4
-
-
0036101724
-
Confidence intervals for a binomial proportion and asymptotic expansions
-
DOI 10.1214/aos/1015362189
-
Brown, L. D., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and Edgeworth expansions. Ann. Statist. 30, 160-201. (Pubitemid 37095373)
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 160-201
-
-
Brown, L.D.1
Cai, T.T.2
Dasgupta, A.3
-
5
-
-
0038374833
-
Interval estimation in exponential families
-
Brown, L. D., Cai, T. and DasGupta, A. (2003). Interval estimation in exponential families. Statistica Sinica 13, 19-49.
-
(2003)
Statistica Sinica
, vol.13
, pp. 19-49
-
-
Brown, L.D.1
Cai, T.2
Dasgupta, A.3
-
6
-
-
13344280339
-
One-sided confidence intervals in discrete distributions
-
Cai, T. (2005). One-sided confidence intervals in discrete distributions. J. Statist. Plann. Inference 131, 63-88.
-
(2005)
J. Statist. Plann. Inference
, vol.131
, pp. 63-88
-
-
Cai, T.1
-
7
-
-
70349242413
-
An accuracy criterion for Bayesian tolerance intervals
-
Easterling, R. G. and Weeks, D. L. (1970). An accuracy criterion for Bayesian tolerance intervals. J. Roy. Statist. Soc. Ser. B 32, 236-240.
-
(1970)
J. Roy. Statist. Soc. Ser. B
, vol.32
, pp. 236-240
-
-
Easterling, R.G.1
Weeks, D.L.2
-
8
-
-
34250598875
-
Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law
-
Esseen, C. G. (1945). Fourier analysis of distribution functions: a mathematical study of the Laplace-Gaussian law. Acta Math. 77, 1-125.
-
(1945)
Acta Math
, vol.77
, pp. 1-125
-
-
Esseen, C.G.1
-
9
-
-
70349259408
-
-
NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward
-
Ghosh, J. K. (1994). Higher Order Asymptotics. NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward.
-
(1994)
Higher Order Asymptotics.
-
-
Ghosh, J.K.1
-
10
-
-
13344257024
-
"Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta
-
Ghosh, M. (2001). Comment on "Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta. Statist. Sci. 16, 124-125.
-
(2001)
Statist. Sci
, vol.16
, pp. 124-125
-
-
Ghosh, M.1
-
11
-
-
0344169060
-
Tolerance intervals for Poisson and binomial variables
-
Hahn, G. J. and Chandra, R. (1981). Tolerance intervals for Poisson and binomial variables. J. Quality Tech. 13, 100-110.
-
(1981)
J. Quality Tech
, vol.13
, pp. 100-110
-
-
Hahn, G.J.1
Chandra, R.2
-
13
-
-
0041908082
-
Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
-
Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69, 647-652
-
(1982)
Biometrika
, vol.69
, pp. 647-652
-
-
Hall, P.1
-
14
-
-
84980175197
-
Tolerance limits which control percentages in both tails: Sampling from mixtures of normal distributions
-
Kocherlakota, S. and Balakrishnan, N. (1986). Tolerance limits which control percentages in both tails: sampling from mixtures of normal distributions. Biometrical J. 28, 209-217.
-
(1986)
Biometrical J
, vol.28
, pp. 209-217
-
-
Kocherlakota, S.1
Balakrishnan, N.2
-
15
-
-
1542680936
-
One-sided tolerance limits in balanced and unbalanced one-way random models based on generalized confidence intervals
-
Krishnamoorthy, K. and Mathew, T.(2004). One-sided tolerance limits in balanced and unbalanced one-way random models based on generalized confidence intervals. Technometrics 46, 44-52.
-
(2004)
Technometrics
, vol.46
, pp. 44-52
-
-
Krishnamoorthy, K.1
Mathew, T.2
-
16
-
-
0002233396
-
Natural exponential families with quadratic variance functions
-
Morris, C. N. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10, 65-80.
-
(1982)
Ann. Statist
, vol.10
, pp. 65-80
-
-
Morris, C.N.1
-
17
-
-
33746271915
-
Second-order probability matching priors for a parametric function with application to Bayesian tolerance limits
-
Mukerjee,R.andReid,N.(2001).Second- orderprobabilitymatchingpriorsforaparametricfunctionwithapplication- Bayesiantolerancelimits.Biometrika8,587-592.(Pubitemid33771008)
-
(2001)
Biometrika
, vol.88
, Issue.2
, pp. 587-592
-
-
Mukerjee, R.1
Reid, N.2
-
19
-
-
0038230283
-
New methods for one-sided tolerance limits for a one-way balanced random-effects ANOVA model
-
Vangel, M. G. (1992). New methods for one-sided tolerance limits for a one-way balanced random-effects ANOVA model. Technometrics 34, 176-185.
-
(1992)
Technometrics
, vol.34
, pp. 176-185
-
-
Vangel, M.G.1
-
20
-
-
0000689040
-
Tolerance limits for normal distribution
-
WaId, A. and Wolfowitz, J. (1946). Tolerance limits for normal distribution. Ann. Math. Statist. 17, 208-215.
-
(1946)
Ann. Math. Statist
, vol.17
, pp. 208-215
-
-
Waid, A.1
Wolfowitz, J.2
-
21
-
-
0002765765
-
Determination of sample sizes for setting tolerance limits
-
Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. Ann. Math. Statist. 12, 91-96.
-
(1941)
Ann. Math. Statist
, vol.12
, pp. 91-96
-
-
Wilks, S.S.1
-
22
-
-
0000929266
-
Statistical prediction with special reference to the problem of tolerance limits
-
Wilks, S. S. (1942). Statistical prediction with special reference to the problem of tolerance limits. Ann. Math. Statist. 13, 400-409.
-
(1942)
Ann. Math. Statist
, vol.13
, pp. 400-409
-
-
Wilks, S.S.1
-
23
-
-
0345162745
-
Uniformly most accurate upper tolerance limits for monotone likelihood ratio families of discrete distributions
-
Zacks, S. (1970). Uniformly most accurate upper tolerance limits for monotone likelihood ratio families of discrete distributions. J. Amer. Statist. Assoc. 65, 307-316.
-
(1970)
J. Amer. Statist. Assoc
, vol.65
, pp. 307-316
-
-
Zacks, S.1
|