-
1
-
-
0032377357
-
Approximate is better than "exact" for interval estimation of binomial proportions
-
Agresti A. Coull B.A. Approximate is better than "exact" for interval estimation of binomial proportions Amer. Statist. 52 1998 119-126
-
(1998)
Amer. Statist.
, vol.52
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
6
-
-
0000460102
-
Interval estimation for a binomial proportion
-
(with discussion)
-
Brown L.D. Cai T. DasGupta A. Interval estimation for a binomial proportion (with discussion) Statist. Sci. 16 2001 101-133
-
(2001)
Statist. Sci.
, vol.16
, pp. 101-133
-
-
Brown, L.D.1
Cai, T.2
DasGupta, A.3
-
7
-
-
0036101724
-
Confidence intervals for a binomial proportion and Edgeworth expansions
-
Brown L.D. Cai T. DasGupta A. Confidence intervals for a binomial proportion and Edgeworth expansions Ann. Statist. 30 2002 160-201
-
(2002)
Ann. Statist.
, vol.30
, pp. 160-201
-
-
Brown, L.D.1
Cai, T.2
DasGupta, A.3
-
9
-
-
13344258481
-
One-sided confidence intervals in discrete distributions
-
Technical Report, Department of Statistics, University of Pennsylvania
-
Cai, T., 2003. One-sided confidence intervals in discrete distributions. Technical Report, Department of Statistics, University of Pennsylvania
-
(2003)
-
-
Cai, T.1
-
10
-
-
0003594381
-
-
Wadsworth, Brooks Cole, CA
-
Casella, G., Berger, R.L., 1990. Statistical Inference. Wadsworth, Brooks Cole, CA
-
(1990)
Statistical Inference
-
-
Casella, G.1
Berger, R.L.2
-
11
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper C.J. Pearson E.S. The use of confidence or fiducial limits illustrated in the case of the binomial Biometrika 26 1934 404-413
-
(1934)
Biometrika
, vol.26
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
12
-
-
51249186300
-
A finely tuned continuity correction
-
Cressie N. A finely tuned continuity correction Ann. Inst. Statist. Math. 30 1980 435-442
-
(1980)
Ann. Inst. Statist. Math.
, vol.30
, pp. 435-442
-
-
Cressie, N.1
-
14
-
-
34250598875
-
Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law
-
Esseen C.G. Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law Acta Math. 77 1945 1-125
-
(1945)
Acta Math.
, vol.77
, pp. 1-125
-
-
Esseen, C.G.1
-
15
-
-
0003208095
-
Higher Order Asymptotics
-
NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward
-
Ghosh, J.K., 1994. Higher Order Asymptotics. NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward
-
(1994)
-
-
Ghosh, J.K.1
-
16
-
-
13344257024
-
Comment on "Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta
-
Ghosh M. Comment on "Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta Statist. Sci. 16 2001 124-125
-
(2001)
Statist. Sci.
, vol.16
, pp. 124-125
-
-
Ghosh, M.1
-
17
-
-
0041908082
-
Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
-
Hall P. Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters Biometrika 69 1982 647-652
-
(1982)
Biometrika
, vol.69
, pp. 647-652
-
-
Hall, P.1
-
19
-
-
0002233396
-
Natural exponential families with quadratic variance functions
-
Morris C.N. Natural exponential families with quadratic variance functions Ann. Statist. 10 1982 65-80
-
(1982)
Ann. Statist.
, vol.10
, pp. 65-80
-
-
Morris, C.N.1
-
20
-
-
0032580320
-
Two-sided confidence intervals for the single proportion; comparison of several methods
-
Newcombe R.G. Two-sided confidence intervals for the single proportion; comparison of several methods Statist. Med. 17 1998 857-872
-
(1998)
Statist. Med.
, vol.17
, pp. 857-872
-
-
Newcombe, R.G.1
-
21
-
-
85040478193
-
A note on teaching binomial confidence intervals
-
Santner T.J. A note on teaching binomial confidence intervals Teaching Statistics 20 1998 20-23
-
(1998)
Teaching Statistics
, vol.20
, pp. 20-23
-
-
Santner, T.J.1
-
22
-
-
0027233743
-
Confidence intervals for a binomial proportion
-
Vollset S.E. Confidence intervals for a binomial proportion Statist. Med. 12 1993 809-824
-
(1993)
Statist. Med.
, vol.12
, pp. 809-824
-
-
Vollset, S.E.1
|