메뉴 건너뛰기




Volumn 131, Issue 1, 2005, Pages 63-88

One-sided confidence intervals in discrete distributions

Author keywords

Bayes; Binomial distribution; Confidence intervals; Coverage probability; Edgeworth expansion; Expected length; Hypothesis testing; Jeffreys prior; Negative Binomial distribution; Normal approximation; Poisson distribution

Indexed keywords


EID: 13344280339     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2004.01.005     Document Type: Article
Times cited : (104)

References (22)
  • 1
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than "exact" for interval estimation of binomial proportions
    • Agresti A. Coull B.A. Approximate is better than "exact" for interval estimation of binomial proportions Amer. Statist. 52 1998 119-126
    • (1998) Amer. Statist. , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 6
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • (with discussion)
    • Brown L.D. Cai T. DasGupta A. Interval estimation for a binomial proportion (with discussion) Statist. Sci. 16 2001 101-133
    • (2001) Statist. Sci. , vol.16 , pp. 101-133
    • Brown, L.D.1    Cai, T.2    DasGupta, A.3
  • 7
    • 0036101724 scopus 로고    scopus 로고
    • Confidence intervals for a binomial proportion and Edgeworth expansions
    • Brown L.D. Cai T. DasGupta A. Confidence intervals for a binomial proportion and Edgeworth expansions Ann. Statist. 30 2002 160-201
    • (2002) Ann. Statist. , vol.30 , pp. 160-201
    • Brown, L.D.1    Cai, T.2    DasGupta, A.3
  • 8
    • 0038374833 scopus 로고    scopus 로고
    • Interval estimation in exponential families
    • Brown L.D. Cai T. DasGupta A. Interval estimation in exponential families Statist. Sinica 13 2003 19-49
    • (2003) Statist. Sinica , vol.13 , pp. 19-49
    • Brown, L.D.1    Cai, T.2    DasGupta, A.3
  • 9
    • 13344258481 scopus 로고    scopus 로고
    • One-sided confidence intervals in discrete distributions
    • Technical Report, Department of Statistics, University of Pennsylvania
    • Cai, T., 2003. One-sided confidence intervals in discrete distributions. Technical Report, Department of Statistics, University of Pennsylvania
    • (2003)
    • Cai, T.1
  • 11
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper C.J. Pearson E.S. The use of confidence or fiducial limits illustrated in the case of the binomial Biometrika 26 1934 404-413
    • (1934) Biometrika , vol.26 , pp. 404-413
    • Clopper, C.J.1    Pearson, E.S.2
  • 12
    • 51249186300 scopus 로고
    • A finely tuned continuity correction
    • Cressie N. A finely tuned continuity correction Ann. Inst. Statist. Math. 30 1980 435-442
    • (1980) Ann. Inst. Statist. Math. , vol.30 , pp. 435-442
    • Cressie, N.1
  • 14
    • 34250598875 scopus 로고
    • Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law
    • Esseen C.G. Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law Acta Math. 77 1945 1-125
    • (1945) Acta Math. , vol.77 , pp. 1-125
    • Esseen, C.G.1
  • 15
    • 0003208095 scopus 로고
    • Higher Order Asymptotics
    • NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward
    • Ghosh, J.K., 1994. Higher Order Asymptotics. NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward
    • (1994)
    • Ghosh, J.K.1
  • 16
    • 13344257024 scopus 로고    scopus 로고
    • Comment on "Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta
    • Ghosh M. Comment on "Interval estimation for a binomial proportion" by L. Brown, T. Cai and A. DasGupta Statist. Sci. 16 2001 124-125
    • (2001) Statist. Sci. , vol.16 , pp. 124-125
    • Ghosh, M.1
  • 17
    • 0041908082 scopus 로고
    • Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
    • Hall P. Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters Biometrika 69 1982 647-652
    • (1982) Biometrika , vol.69 , pp. 647-652
    • Hall, P.1
  • 19
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance functions
    • Morris C.N. Natural exponential families with quadratic variance functions Ann. Statist. 10 1982 65-80
    • (1982) Ann. Statist. , vol.10 , pp. 65-80
    • Morris, C.N.1
  • 20
    • 0032580320 scopus 로고    scopus 로고
    • Two-sided confidence intervals for the single proportion; comparison of several methods
    • Newcombe R.G. Two-sided confidence intervals for the single proportion; comparison of several methods Statist. Med. 17 1998 857-872
    • (1998) Statist. Med. , vol.17 , pp. 857-872
    • Newcombe, R.G.1
  • 21
    • 85040478193 scopus 로고    scopus 로고
    • A note on teaching binomial confidence intervals
    • Santner T.J. A note on teaching binomial confidence intervals Teaching Statistics 20 1998 20-23
    • (1998) Teaching Statistics , vol.20 , pp. 20-23
    • Santner, T.J.1
  • 22
    • 0027233743 scopus 로고
    • Confidence intervals for a binomial proportion
    • Vollset S.E. Confidence intervals for a binomial proportion Statist. Med. 12 1993 809-824
    • (1993) Statist. Med. , vol.12 , pp. 809-824
    • Vollset, S.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.