메뉴 건너뛰기




Volumn 13, Issue 1, 2003, Pages 19-49

Interval estimation in exponential families

Author keywords

Bayes; Binomial distribution; Confidence intervals; Coverage probability; Edgeworth expansion; Expected length; Jeffreys prior; Natural exponential family; Negative binomial distribution; Normal approximation; Poisson distribution; Quadratic variance function

Indexed keywords


EID: 0038374833     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (46)

References (24)
  • 1
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than "exact" for interval estimation of binomial proportions
    • Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist. 52, 119-126.
    • (1998) Amer. Statist. , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 5
    • 0003757760 scopus 로고
    • Fundamentals of statistical exponential families with applications in statistical decision theory
    • Institute of Mathematical Statistics, Hayward, California
    • Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Lecture Notes-Monograph Series, Institute of Mathematical Statistics, Hayward, California.
    • (1986) Lecture Notes-Monograph Series
    • Brown, L.D.1
  • 6
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion (with discussion)
    • Brown, L. D., Cai, T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci. 16, 101-133.
    • (2001) Statist. Sci. , vol.16 , pp. 101-133
    • Brown, L.D.1    Cai, T.2    DasGupta, A.3
  • 7
    • 0036101724 scopus 로고    scopus 로고
    • Confidence intervals for a binomial proportion and Edgeworth expansions
    • in press
    • Brown, L. D., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and Edgeworth expansions. Ann. Statist. 30, in press.
    • (2002) Ann. Statist. , vol.30
    • Brown, L.D.1    Cai, T.2    DasGupta, A.3
  • 9
    • 0004137231 scopus 로고
    • Refining Poisson confidence intervals
    • Casella, G. and Robert, C. (1989). Refining Poisson confidence intervals. Canad. J. Statist. 17, 45-57.
    • (1989) Canad. J. Statist. , vol.17 , pp. 45-57
    • Casella, G.1    Robert, C.2
  • 10
    • 0037876155 scopus 로고
    • Simultaneous estimation of the means of independent Poisson laws
    • Clevenson, M. and Zidek, J. (1975). Simultaneous estimation of the means of independent Poisson laws, J. Amer. Stat. Assoc. 70, 698-705.
    • (1975) J. Amer. Stat. Assoc. , vol.70 , pp. 698-705
    • Clevenson, M.1    Zidek, J.2
  • 11
    • 0001176911 scopus 로고
    • Confidence intervals for the expectation of a Poisson variable
    • Crow, E. L. and Gardner, R. S. (1959). Confidence intervals for the expectation of a Poisson variable. Biometrika 46, 441-453.
    • (1959) Biometrika , vol.46 , pp. 441-453
    • Crow, E.L.1    Gardner, R.S.2
  • 12
    • 34250598875 scopus 로고
    • Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law
    • Esseen, C. G. (1945). Fourier analysis of distribution functions: a mathematical study of the Laplace-Gaussian law. Acta Math. 77, 1-125.
    • (1945) Acta Math. , vol.77 , pp. 1-125
    • Esseen, C.G.1
  • 13
    • 0041105973 scopus 로고
    • Higher order asymptotics
    • Institute of Mathematical Statistics, Hayward
    • Ghosh, J. K. (1994). Higher Order Asymptotics. NSF-CBMS Regional Conference Series, Institute of Mathematical Statistics, Hayward.
    • (1994) NSF-CBMS Regional Conference Series
    • Ghosh, J.K.1
  • 16
    • 0001153759 scopus 로고
    • Asymptotic expansions associated with posterior distributions
    • Johnson, R. A. (1970). Asymptotic expansions associated with posterior distributions. Ann. Math. Statist. 41, 851-64.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 851-864
    • Johnson, R.A.1
  • 17
    • 0020496785 scopus 로고
    • On a "two stage" Bayesian procedure for determining failure rates from experimental data
    • Kaplan, S. (1983). On a "two stage" Bayesian procedure for determining failure rates from experimental data, IEEE Trans. on Power App. and Sys. 102, 195-202.
    • (1983) IEEE Trans. on Power App. and Sys. , vol.102 , pp. 195-202
    • Kaplan, S.1
  • 18
    • 0035618314 scopus 로고    scopus 로고
    • Exact short Poisson confidence intervals
    • Kabaila, P. and Byrne, J. (2001). Exact short Poisson confidence intervals. Canad. J. Statist. 29, 99-106.
    • (2001) Canad. J. Statist. , vol.29 , pp. 99-106
    • Kabaila, P.1    Byrne, J.2
  • 19
    • 0029007360 scopus 로고
    • Confidence limits for the population prevalence rate based on the negative binomial distribution
    • Lui, K.-J. (1995). Confidence limits for the population prevalence rate based on the negative binomial distribution. Statist. Medicine 14, 1471-1477.
    • (1995) Statist. Medicine , vol.14 , pp. 1471-1477
    • Lui, K.-J.1
  • 20
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance functions
    • Morris, C. N. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10, 65-80.
    • (1982) Ann. Statist. , vol.10 , pp. 65-80
    • Morris, C.N.1
  • 21
    • 0000405155 scopus 로고
    • Natural exponential families with quadratic variance functions: Statistical theory
    • Morris, C. N. (1983). Natural exponential families with quadratic variance functions: statistical theory, Ann. Statist. 11, 515-529.
    • (1983) Ann. Statist. , vol.11 , pp. 515-529
    • Morris, C.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.