-
1
-
-
0032377357
-
Approximate is better than "exact" for interval estimation of binomial proportions
-
AGRESTI, A. and COULL, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist. 52 119-126.
-
(1998)
Amer. Statist.
, vol.52
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
7
-
-
0038552509
-
Interval estimation in exponential families
-
Dept. Statistics, Univ. Pennsylvania
-
BROWN, L. D., CAI, T. and DASGUPTA, A. (2000). Interval estimation in exponential families. Technical report, Dept. Statistics, Univ. Pennsylvania. Available at www-stat.wharton.upenn.edu/̃tcai/.
-
(2000)
Technical Report
-
-
Brown, L.D.1
Cai, T.2
Dasgupta, A.3
-
8
-
-
0000460102
-
Interval estimation for a binomial proportion (with discussion)
-
BROWN, L. D., CAI, T. and DASGUPTA, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci. 16 101-133.
-
(2001)
Statist. Sci.
, vol.16
, pp. 101-133
-
-
Brown, L.D.1
Cai, T.2
Dasgupta, A.3
-
9
-
-
21844488686
-
Optimal confidence sets, bioequivalence, and the limacon of Pascal
-
BROWN, L. D., CASELLA, G. and HWANG, J. T. G. (1995). Optimal confidence sets, bioequivalence, and the limacon of Pascal. J. Amer. Statist. Assoc. 90 880-889.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 880-889
-
-
Brown, L.D.1
Casella, G.2
Hwang, J.T.G.3
-
10
-
-
0042112228
-
Loss functions for set estimation
-
(S. S. Gupta and J. Berger, eds.). Academic Press, New York
-
CASELLA, G., HWANG, J. T. G. and ROBERT, C. P. (1994). Loss functions for set estimation. In Statistical Decision Theory and Related Topics V (S. S. Gupta and J. Berger, eds.) 237-251. Academic Press, New York.
-
(1994)
Statistical Decision Theory and Related Topics V
, pp. 237-251
-
-
Casella, G.1
Hwang, J.T.G.2
Robert, C.P.3
-
11
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
CLOPPER C. J. and PEARSON, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 404-13.
-
(1934)
Biometrika
, vol.26
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
12
-
-
0000109957
-
Confidence intervals for a proportion
-
CROW, E. L. (1956). Confidence intervals for a proportion. Biometrika 43 423-35.
-
(1956)
Biometrika
, vol.43
, pp. 423-435
-
-
Crow, E.L.1
-
13
-
-
34250598875
-
Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law
-
ESSEEN, C. G. (1945). Fourier analysis of distribution functions: a mathematical study of the Laplace-Gaussian law. Acta Math. 77 1-125.
-
(1945)
Acta Math.
, vol.77
, pp. 1-125
-
-
Esseen, C.G.1
-
14
-
-
0001473014
-
A comparison of some approximate confidence intervals for the binomial parameter
-
GHOSH, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter J. Amer. Stat. Assoc. 74 894-900.
-
(1979)
J. Amer. Stat. Assoc.
, vol.74
, pp. 894-900
-
-
Ghosh, B.K.1
-
16
-
-
0041908082
-
Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
-
HALL, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69 647-52.
-
(1982)
Biometrika
, vol.69
, pp. 647-652
-
-
Hall, P.1
-
18
-
-
0003446320
-
-
Wiley, New York
-
JOHNSON, N. L., KOTZ, S. and BALAKRISHNAN, N. (1995). Continuous Univariate Distributions 2, 2nd ed. Wiley, New York.
-
(1995)
Continuous Univariate Distributions 2, 2nd Ed.
-
-
Johnson, N.L.1
Kotz, S.2
Balakrishnan, N.3
-
19
-
-
0001153759
-
Asymptotic expansions associated with posterior distributions
-
JOHNSON, R. A. (1970). Asymptotic expansions associated with posterior distributions. Ann. Math. Statist. 41 851-64.
-
(1970)
Ann. Math. Statist.
, vol.41
, pp. 851-864
-
-
Johnson, R.A.1
-
20
-
-
0001482702
-
Practical use of higher order asymptotics for multiparameter exponential families
-
PIERCE, D. A. and PETERS, D. (1992). Practical use of higher order asymptotics for multiparameter exponential families. J. Roy. Statist. Soc. Ser. B 54 701-725.
-
(1992)
J. Roy. Statist. Soc. Ser. B
, vol.54
, pp. 701-725
-
-
Pierce, D.A.1
Peters, D.2
-
22
-
-
85040478193
-
Teaching large-sample binomial confidence intervals
-
SANTNER, T. J. (1998). Teaching large-sample binomial confidence intervals. Teaching Statistics 20 20-23.
-
(1998)
Teaching Statistics
, vol.20
, pp. 20-23
-
-
Santner, T.J.1
-
23
-
-
0039726907
-
Charting small sample characteristics of asymptotic confidence intervals for the binomial parameter
-
SCHADER, M. and SCHMID, F. (1990). Charting small sample characteristics of asymptotic confidence intervals for the binomial parameter p. Statist. Papers 31 251-264.
-
(1990)
p. Statist. Papers
, vol.31
, pp. 251-264
-
-
Schader, M.1
Schmid, F.2
-
24
-
-
0000226032
-
Some remarks on confidence or fiducial limits
-
STERNE, T. E. (1954). Some remarks on confidence or fiducial limits. Biometrika 41 275-278.
-
(1954)
Biometrika
, vol.41
, pp. 275-278
-
-
Sterne, T.E.1
-
25
-
-
0042910166
-
An inferential interpretation of default priors
-
Dept. Statistics, Carnegie Mellon Univ.
-
WASSERMAN, L. (1991). An inferential interpretation of default priors. Technical report, Dept. Statistics, Carnegie Mellon Univ.
-
(1991)
Technical Report
-
-
Wasserman, L.1
-
26
-
-
84946650481
-
Probable inference, the law of succession, and statistical inference
-
WILSON, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc. 22 209-212.
-
(1927)
J. Amer. Statist. Assoc.
, vol.22
, pp. 209-212
-
-
Wilson, E.B.1
-
27
-
-
0000266172
-
Very weak expansions for sequential confidence levels
-
WOODROOFE, M. (1986). Very weak expansions for sequential confidence levels. Ann. Statist. 14 1049-1067.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1049-1067
-
-
Woodroofe, M.1
|