-
1
-
-
33749350731
-
-
10.1038/nphys412
-
S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen, Nat. Phys. 2, 687 (2006). 10.1038/nphys412
-
(2006)
Nat. Phys.
, vol.2
, pp. 687
-
-
Ilani, S.1
Donev, L.A.K.2
Kindermann, M.3
McEuen, P.L.4
-
2
-
-
0042364978
-
-
10.1143/JJAP.42.L766
-
M. Tanaka, Y. Gohda, S. Furuya, and S. Watanabe, Jpn. J. Appl. Phys., Part 2 42, L766 (2003). 10.1143/JJAP.42.L766
-
(2003)
Jpn. J. Appl. Phys., Part 2
, vol.42
, pp. 766
-
-
Tanaka, M.1
Gohda, Y.2
Furuya, S.3
Watanabe, S.4
-
3
-
-
35648999993
-
-
10.1103/PhysRevB.76.155436;
-
K. Uchida, S. Okada, K. Shiraishi, and A. Oshiyama, Phys. Rev. B 76, 155436 (2007) 10.1103/PhysRevB.76.155436
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155436
-
-
Uchida, K.1
Okada, S.2
Shiraishi, K.3
Oshiyama, A.4
-
5
-
-
60949088515
-
-
10.1103/PhysRevB.79.085402
-
K. Uchida and S. Okada, Phys. Rev. B 79, 085402 (2009). 10.1103/PhysRevB.79.085402
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085402
-
-
Uchida, K.1
Okada, S.2
-
6
-
-
68949135349
-
-
IEEE, New York
-
M. Masuoka, T. Endoh, and H. Sakuraba, Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits, and Systems (IEEE, New York, 2002), pp. C015-1C015-5.
-
(2002)
Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits, and Systems
, pp. 0151-0155
-
-
Masuoka, M.1
Endoh, T.2
Sakuraba, H.3
-
7
-
-
0024172246
-
-
10.1109/IEDM.1988.32796;
-
H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, and F. Masuoka, Tech. Dig.-Int. Electron Devices Meet. 1988, 222 10.1109/IEDM.1988.32796
-
Tech. Dig.-Int. Electron Devices Meet.
, vol.1988
, pp. 222
-
-
Takato, H.1
Sunouchi, K.2
Okabe, N.3
Nitayama, A.4
Hieda, K.5
Horiguchi, F.6
Masuoka, F.7
-
8
-
-
0024870892
-
-
10.1109/IEDM.1989.74220
-
K. Sunouchi, H. Takato, N. Okabe, T. Yamada, T. Ozaki, S. Inoue, K. Hashimoto, K. Hieda, A. Nitayama, F. Horiguchi, and F. Masuoka, Tech. Dig.-Int. Electron Devices Meet. 1989, 23. 10.1109/IEDM.1989.74220
-
Tech. Dig.-Int. Electron Devices Meet.
, vol.1989
, pp. 23
-
-
Sunouchi, K.1
Takato, H.2
Okabe, N.3
Yamada, T.4
Ozaki, T.5
Inoue, S.6
Hashimoto, K.7
Hieda, K.8
Nitayama, A.9
Horiguchi, F.10
Masuoka, F.11
-
9
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
10
-
-
0346421116
-
-
10.1103/PhysRevLett.91.216801
-
S. Okada and A. Oshiyama, Phys. Rev. Lett. 91, 216801 (2003). 10.1103/PhysRevLett.91.216801
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 216801
-
-
Okada, S.1
Oshiyama, A.2
-
12
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
13
-
-
26144450583
-
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
-
15
-
-
20544463457
-
-
10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 10.1103/PhysRevB.41.7892
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
16
-
-
0000873095
-
-
Tokyo Ab initio Program Package (TAPP) is developed by a consortium initiated at University of Tokyo: 10.1103/PhysRevB.54.5586;
-
Tokyo Ab initio Program Package (TAPP) is developed by a consortium initiated at University of Tokyo: J. Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Phys. Rev. B 54, 5586 (1996) 10.1103/PhysRevB.54.5586
-
(1996)
Phys. Rev. B
, vol.54
, pp. 5586
-
-
Yamauchi, J.1
Tsukada, M.2
Watanabe, S.3
Sugino, O.4
-
19
-
-
25844528156
-
-
10.1016/j.cplett.2005.08.085
-
W. Song, M. Ni, J. Lu, Z. Gao, S. Nagase, D. Yu, H. Ye, and Z. Zhang, Chem. Phys. Lett. 414, 429 (2005). 10.1016/j.cplett.2005.08.085
-
(2005)
Chem. Phys. Lett.
, vol.414
, pp. 429
-
-
Song, W.1
Ni, M.2
Lu, J.3
Gao, Z.4
Nagase, S.5
Yu, D.6
Ye, H.7
Zhang, Z.8
-
20
-
-
68949136778
-
-
A graphene sheet, which can be regarded as a CNT with an infinite radius, has a zero band gap.
-
A graphene sheet, which can be regarded as a CNT with an infinite radius, has a zero band gap.
-
-
-
-
21
-
-
9644267243
-
-
10.1103/PhysRevLett.72.1878
-
X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994). 10.1103/PhysRevLett.72.1878
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1878
-
-
Blase, X.1
Benedict, L.X.2
Shirley, E.L.3
Louie, S.G.4
-
22
-
-
68949093844
-
-
To guarantee that there is no charge injection into the intercalated (17,0) CNT, the quantity of the stored charge Q must be at most ∼0.1e/cell. All calculations in this paper are performed for the charge Q less than this value.
-
To guarantee that there is no charge injection into the intercalated (17,0) CNT, the quantity of the stored charge Q must be at most ∼0.1e/cell. All calculations in this paper are performed for the charge Q less than this value.
-
-
-
-
23
-
-
68949128823
-
-
When the finite input charge ±Q is accommodated in the electrode CNTs, we definitely obtain the Fermi levels F (8,0) and F (26,0) as the outputs. We then calculate the bias voltage as μ= F (8,0) - F (26,0). When Q=0 and μ is in the range of 0≤μ≤ Eg, with F (8,0) and F (26,0) located somewhere in the band gap of the TWCNT. In this case, exact positions of F (8,0) and F (26,0) are not well defined. We thus define that F (8,0) = F (26,0) is located at the center of the energy gap when μ=0 and F (8,0) [F (26,0)] moves to the bottom (top) of the conduction (valence) band when μ increases to Eg. The results presented in this paper are unaffected by the way of defining the Fermi levels in the case of Q=0. We restrict ourselves to the case of μ0 in this paper.
-
When the finite input charge ±Q is accommodated in the electrode CNTs, we definitely obtain the Fermi levels F (8,0) and F (26,0) as the outputs. We then calculate the bias voltage as μ= F (8,0) - F (26,0). When Q=0 and μ is in the range of 0≤μ≤ Eg, with F (8,0) and F (26,0) located somewhere in the band gap of the TWCNT. In this case, exact positions of F (8,0) and F (26,0) are not well defined. We thus define that F (8,0) = F (26,0) is located at the center of the energy gap when μ=0 and F (8,0) [F (26,0)] moves to the bottom (top) of the conduction (valence) band when μ increases to Eg. The results presented in this paper are unaffected by the way of defining the Fermi levels in the case of Q=0. We restrict ourselves to the case of μ0 in this paper.
-
-
-
-
24
-
-
44949213738
-
-
The orbital hybridization between the adjacent CNTs without the bias voltage is discussed in: 10.1103/PhysRevB.77.245403
-
The orbital hybridization between the adjacent CNTs without the bias voltage is discussed in: V. Zolyomi, J. Koltai, A. Rusznyak, J. Kurti, A. Gali, F. Simon, H. Kuzmany, A. Szabados, and P. R. Surjan, Phys. Rev. B 77, 245403 (2008). We note that the bias-induced variation in the orbital hybridization is a part of the dielectric responses. 10.1103/PhysRevB.77.245403
-
(2008)
Phys. Rev. B
, vol.77
, pp. 245403
-
-
Zolyomi, V.1
Koltai, J.2
Rusznyak, A.3
Kurti, J.4
Gali, A.5
Simon, F.6
Kuzmany, H.7
Szabados, A.8
Surjan, P.R.9
-
25
-
-
2142824262
-
-
10.1103/PhysRevB.69.115418
-
P. Pomorski, L. Pastewka, C. Roland, H. Guo, and J. Wang, Phys. Rev. B 69, 115418 (2004). 10.1103/PhysRevB.69.115418
-
(2004)
Phys. Rev. B
, vol.69
, pp. 115418
-
-
Pomorski, P.1
Pastewka, L.2
Roland, C.3
Guo, H.4
Wang, J.5
-
27
-
-
36149020165
-
-
10.1103/PhysRev.138.A197
-
E. A. Taft and H. R. Philipp, Phys. Rev. 138, A197 (1965). 10.1103/PhysRev.138.A197
-
(1965)
Phys. Rev.
, vol.138
, pp. 197
-
-
Taft, E.A.1
Philipp, H.R.2
-
28
-
-
68949101816
-
-
The slight difference between the potential shift Vsh (=0.084eV) and the increase in the band gap Eg′ - Eg (=0.08eV) is ascribed to small modifications of the band structures in each CNT.
-
The slight difference between the potential shift Vsh (=0.084eV) and the increase in the band gap Eg′ - Eg (=0.08eV) is ascribed to small modifications of the band structures in each CNT.
-
-
-
-
29
-
-
68949105602
-
-
In Fig. 6, the energy bands of (a) the TWCNT and (b) the constituent CNTs are first aligned with the common vacuum level. Then, the energy bands of the (8,0) and (17,0) CNTs are shifted upward by 0.084 and 0.031 eV, respectively.
-
In Fig. 6, the energy bands of (a) the TWCNT and (b) the constituent CNTs are first aligned with the common vacuum level. Then, the energy bands of the (8,0) and (17,0) CNTs are shifted upward by 0.084 and 0.031 eV, respectively.
-
-
-
-
30
-
-
68949136777
-
-
As we use the ultrasoft pseudopotential method in the present paper, Eq. 1 is slightly modified according to the treatments shown in Ref. to compensate for the deficit charge.
-
As we use the ultrasoft pseudopotential method in the present paper, Eq. 1 is slightly modified according to the treatments shown in Ref. to compensate for the deficit charge.
-
-
-
|