메뉴 건너뛰기




Volumn 60, Issue 9, 2009, Pages 1191-1197

Optimization of manufacturing systems using a neural network metamodel with a new training approach

Author keywords

Metamodel; Neural networks; Simulation; Simulation optimization; Tabu search

Indexed keywords

BACKPROPAGATION ALGORITHMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; TABU SEARCH;

EID: 68649087846     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2602620     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 0036682097 scopus 로고    scopus 로고
    • A comparison of the performance of artificial intelligence techniques for optimizing the number of kanbans
    • Alabas C, Altiparmak F and Dengiz B (2002). A comparison of the performance of artificial intelligence techniques for optimizing the number of kanbans. J Opl Res Soc 53: 907-914.
    • (2002) J Opl Res Soc , vol.53 , pp. 907-914
    • Alabas, C.1    Altiparmak, F.2    Dengiz, B.3
  • 2
    • 4944230965 scopus 로고    scopus 로고
    • A comparison of experimental designs in the development of a neural network simulation metamodel
    • Alam F, McNaught KR and Ringrose TJ (2004). A comparison of experimental designs in the development of a neural network simulation metamodel. Simul Model Pract Theory 12: 559-578.
    • (2004) Simul Model Pract Theory , vol.12 , pp. 559-578
    • Alam, F.1    McNaught, K.R.2    Ringrose, T.J.3
  • 3
    • 34047271147 scopus 로고    scopus 로고
    • Buffer allocation and performance modeling in asynchronous assembly system operations: An artificial neural network metamodeling approach
    • Altiparmak F, Dengiz B and Bulgak AA (2007). Buffer allocation and performance modeling in asynchronous assembly system operations: An artificial neural network metamodeling approach. Appl Soft Comput 7: 946-956.
    • (2007) Appl Soft Comput , vol.7 , pp. 946-956
    • Altiparmak, F.1    Dengiz, B.2    Bulgak, A.A.3
  • 4
    • 0030194006 scopus 로고    scopus 로고
    • Determining the number of kanbans: A simulation metamodeling approach
    • Aytug H, Dogan CA and Bezmez G (1996). Determining the number of kanbans: A simulation metamodeling approach. Simulation 67: 23-32.
    • (1996) Simulation , vol.67 , pp. 23-32
    • Aytug, H.1    Dogan, C.A.2    Bezmez, G.3
  • 5
    • 0016518731 scopus 로고
    • The construction and implementation of metamodels
    • Blanning RW (1975). The construction and implementation of metamodels. Simulation 24: 177-184.
    • (1975) Simulation , vol.24 , pp. 177-184
    • Blanning, R.W.1
  • 6
    • 0037151803 scopus 로고    scopus 로고
    • Process optimization via neural network metamodeling
    • Chambers M and Mount-Campbell CA (2002). Process optimization via neural network metamodeling. Int J Prod Econ 79: 93-100.
    • (2002) Int J Prod Econ , vol.79 , pp. 93-100
    • Chambers, M.1    Mount-Campbell, C.A.2
  • 7
    • 0035872171 scopus 로고    scopus 로고
    • On-line optimization of quality in a manufacturing system
    • Chan KK and Spedding TA (2001). On-line optimization of quality in a manufacturing system. Int J Prod Res 39: 1127-1145.
    • (2001) Int J Prod Res , vol.39 , pp. 1127-1145
    • Chan, K.K.1    Spedding, T.A.2
  • 8
    • 0037050379 scopus 로고    scopus 로고
    • Design of manufacturing systems by a hybrid approach with neural network metamodelling and stochastic local search
    • Chen MC and Yang T (2002). Design of manufacturing systems by a hybrid approach with neural network metamodelling and stochastic local search. Int J Prod Res 40: 71-92.
    • (2002) Int J Prod Res , vol.40 , pp. 71-92
    • Chen, M.C.1    Yang, T.2
  • 9
    • 33244463976 scopus 로고    scopus 로고
    • Simulation optimization based DSS application: A diamond tool production line in industry
    • Dengiz B, Bektas T and Ultanir E (2006). Simulation optimization based DSS application: A diamond tool production line in industry. Simul Model Pract Theory 14: 296-312.
    • (2006) Simul Model Pract Theory , vol.14 , pp. 296-312
    • Dengiz, B.1    Bektas, T.2    Ultanir, E.3
  • 10
    • 58449100709 scopus 로고    scopus 로고
    • A tabu search algorithm for the training of neural networks
    • publication, 16 January, doi:10.1057/palgrave. jors.2602535
    • Dengiz B, Alabas-Uslu C and Dengiz O (2008). A tabu search algorithm for the training of neural networks. J Opl Res Soc, advance online publication, 16 January 2008, doi:10.1057/palgrave. jors.2602535.
    • (2008) J Opl Res Soc, advance online
    • Dengiz, B.1    Alabas-Uslu, C.2    Dengiz, O.3
  • 12
    • 0032144731 scopus 로고    scopus 로고
    • A modified back propagation method to avoid false local minima
    • Fukuoka Y, Matsuki H, Minamitani H and Ishida A (1998). A modified back propagation method to avoid false local minima. Neural Networks 11: 1059-1072.
    • (1998) Neural Networks , vol.11 , pp. 1059-1072
    • Fukuoka, Y.1    Matsuki, H.2    Minamitani, H.3    Ishida, A.4
  • 13
    • 0000411214 scopus 로고
    • Tabu search-Part I
    • Glover F (1989). Tabu search-Part I. ORSA J Comput 1: 190-206.
    • (1989) ORSA J Comput , vol.1 , pp. 190-206
    • Glover, F.1
  • 14
    • 0001724713 scopus 로고
    • Tabu search-Part II
    • Glover F (1990). Tabu search-Part II. ORSA J Comput 2: 4-32.
    • (1990) ORSA J Comput , vol.2 , pp. 4-32
    • Glover, F.1
  • 17
    • 0026851007 scopus 로고
    • Using a neural network to enhance the decision making quality of a visual interactive simulation model
    • Hurrion RD (1992). Using a neural network to enhance the decision making quality of a visual interactive simulation model. J Opl Res Soc 43: 333-341.
    • (1992) J Opl Res Soc , vol.43 , pp. 333-341
    • Hurrion, R.D.1
  • 18
    • 0031284208 scopus 로고    scopus 로고
    • An example of simulation optimization using a neural network metamodel: Finding the optimum number of kanbans in a manufacturing system
    • Hurrion RD (1997). An example of simulation optimization using a neural network metamodel: Finding the optimum number of kanbans in a manufacturing system. J Opl Res Soc 48: 1105-1112.
    • (1997) J Opl Res Soc , vol.48 , pp. 1105-1112
    • Hurrion, R.D.1
  • 19
    • 0033454151 scopus 로고    scopus 로고
    • A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels
    • Hurrion RD and Birgil S (1999). A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels. J Opl Res Soc 50: 1018-1023.
    • (1999) J Opl Res Soc , vol.50 , pp. 1018-1023
    • Hurrion, R.D.1    Birgil, S.2
  • 20
    • 0001513581 scopus 로고    scopus 로고
    • Training a sigmodial node is hard
    • Hush DR (1999). Training a sigmodial node is hard. Neural Comput 11: 1249-1260.
    • (1999) Neural Comput , vol.11 , pp. 1249-1260
    • Hush, D.R.1
  • 21
    • 0242269832 scopus 로고    scopus 로고
    • Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process
    • Jang KY, Yang K and Kang C (2003). Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process. Int J Prod Res 41: 1239-1254.
    • (2003) Int J Prod Res , vol.41 , pp. 1239-1254
    • Jang, K.Y.1    Yang, K.2    Kang, C.3
  • 22
    • 0028731802 scopus 로고
    • Neural networks as a metamodeling technique for discrete event stochastic simulation
    • Kilmer RA, Smith AE and Shuman LJ (1994). Neural networks as a metamodeling technique for discrete event stochastic simulation. Intell Eng Syst Artif Neural Networks 4: 1141-1146.
    • (1994) Intell Eng Syst Artif Neural Networks , vol.4 , pp. 1141-1146
    • Kilmer, R.A.1    Smith, A.E.2    Shuman, L.J.3
  • 24
    • 34547778459 scopus 로고    scopus 로고
    • Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication
    • Kuo Y, Yang T, Peters BA and Chang I (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simul Model Pract Theory 15: 1002-1015.
    • (2007) Simul Model Pract Theory , vol.15 , pp. 1002-1015
    • Kuo, Y.1    Yang, T.2    Peters, B.A.3    Chang, I.4
  • 25
    • 0036498118 scopus 로고    scopus 로고
    • Neural network prediction in a system for optimizing simulations
    • Laguna M and Marti R (2002). Neural network prediction in a system for optimizing simulations. IIE Trans 34: 273-282.
    • (2002) IIE Trans , vol.34 , pp. 273-282
    • Laguna, M.1    Marti, R.2
  • 26
    • 0033724249 scopus 로고    scopus 로고
    • A neural-net approach to real time flow-shop sequencing
    • Lee I and Shaw M (2000). A neural-net approach to real time flow-shop sequencing. Comput Ind Eng 38: 125-147.
    • (2000) Comput Ind Eng , vol.38 , pp. 125-147
    • Lee, I.1    Shaw, M.2
  • 27
    • 0040680398 scopus 로고    scopus 로고
    • Application of neural networks and simulation modeling in manufacturing system design
    • and GeorgiopoulosM
    • Mollaghasemi M, LeCroy K and GeorgiopoulosM(1998). Application of neural networks and simulation modeling in manufacturing system design. Interfaces 28: 100-114.
    • (1998) Interfaces , vol.28 , pp. 100-114
    • Mollaghasemi, M.1    LeCroy, K.2
  • 28
    • 0034959606 scopus 로고    scopus 로고
    • Hybrid AI-and simulation supported optimization of process chain and production plants
    • Monostori L and Viharos ZJ (2001). Hybrid AI-and simulation supported optimization of process chain and production plants. Ann CIRP 50: 353-356.
    • (2001) Ann CIRP , vol.50 , pp. 353-356
    • Monostori, L.1    Viharos, Z.J.2
  • 29
    • 0033717569 scopus 로고    scopus 로고
    • Scheduling jobs on parallel machines applying neural network and heuristic rules
    • Park Y, Kim S and Lee YH (2000). Scheduling jobs on parallel machines applying neural network and heuristic rules. Comput Ind Eng 38: 189-202.
    • (2000) Comput Ind Eng , vol.38 , pp. 189-202
    • Park, Y.1    Kim, S.2    Lee, Y.H.3
  • 30
    • 0001094427 scopus 로고
    • An investigation on neural network capabilities as simulation metamodels
    • Luker P ed, Society for Computer Simulation: Reno, Nevada, pp
    • Pierreval H and Huntsinger RC (1992). An investigation on neural network capabilities as simulation metamodels. In: Luker P (ed). Proceedings of 1992 Summer Computer Simulation Conference. Society for Computer Simulation: Reno, Nevada, pp 413-417.
    • (1992) Proceedings of 1992 Summer Computer Simulation Conference , pp. 413-417
    • Pierreval, H.1    Huntsinger, R.C.2
  • 31
    • 0037143042 scopus 로고    scopus 로고
    • Simulation metamodelling with neural networks: An experimental investigation
    • Sabuncuoglu I and Touhami S (2002). Simulation metamodelling with neural networks: An experimental investigation. Int J Prod Res 40: 2483-2505.
    • (2002) Int J Prod Res , vol.40 , pp. 2483-2505
    • Sabuncuoglu, I.1    Touhami, S.2
  • 32
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B36: 111-133.
    • (1974) Journal of the Royal Statistical Society , vol.B36 , pp. 111-133
    • Stone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.