메뉴 건너뛰기




Volumn 11, Issue 5, 1999, Pages 1249-1260

Training a sigmoidal node is hard

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001513581     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976699300016449     Document Type: Article
Times cited : (15)

References (16)
  • 1
    • 0000270806 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • L. Valiant & M. Warmuth (eds.)
    • Barron, A. (1991). Approximation and estimation bounds for artificial neural networks. In L. Valiant & M. Warmuth (eds.), Proceedings of the 4th Annual Workshop on Computational Learning Theory (pp. 243-249).
    • (1991) Proceedings of the 4th Annual Workshop on Computational Learning Theory , pp. 243-249
    • Barron, A.1
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.1
  • 3
    • 0000240862 scopus 로고
    • A proposal for more powerful learning algorithms
    • Baum, E. (1989). A proposal for more powerful learning algorithms. Neural Computation, 1(2), 201-207.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 201-207
    • Baum, E.1
  • 6
    • 0029408426 scopus 로고
    • On the complexity of training neural networks with continuous activation functions
    • DasGupta, B., Siegelmann, H., & Sontag, E. (1995). On the complexity of training neural networks with continuous activation functions. IEEE Transactions on Neural Networks, 6(6), 1490-1504.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1490-1504
    • DasGupta, B.1    Siegelmann, H.2    Sontag, E.3
  • 7
    • 0027635407 scopus 로고
    • Computational limitations on training sigmoidal neural networks
    • Höffgen, K.-U. (1993). Computational limitations on training sigmoidal neural networks. Information Processing Letters, 46, 269-274.
    • (1993) Information Processing Letters , vol.46 , pp. 269-274
    • Höffgen, K.-U.1
  • 8
    • 0032207495 scopus 로고    scopus 로고
    • Efficient algorithms for function approximation with piecewise linear sigmoidal networks
    • Hush, D., & Home, B. (1998). Efficient algorithms for function approximation with piecewise linear sigmoidal networks. IEEE Transactions on Neural Networks, 9(6), 1129-1141.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1129-1141
    • Hush, D.1    Home, B.2
  • 9
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones, L. (1992). A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics, 20, 608-613.
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.1
  • 10
    • 0030736446 scopus 로고    scopus 로고
    • The computational intractibility of training sigmoidal neural networks
    • Jones, L. (1997). The computational intractibility of training sigmoidal neural networks. IEEE Transactions on Information Theory, 43(1), 167-173.
    • (1997) IEEE Transactions on Information Theory , vol.43 , Issue.1 , pp. 167-173
    • Jones, L.1
  • 12
    • 0026152917 scopus 로고
    • Complexity results on learning by neural networks
    • Lin, J.-H., & Vitter, J. S. (1991). Complexity results on learning by neural networks. Machine Learning, 6, 211-230.
    • (1991) Machine Learning , vol.6 , pp. 211-230
    • Lin, J.-H.1    Vitter, J.S.2
  • 14
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • Šíma, J. (1996). Back-propagation is not efficient. Neural Networks, 9(6), 1017-1023.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 1017-1023
    • Šíma, J.1
  • 16
    • 0029267782 scopus 로고
    • Learning with piece-wise linear networks
    • Staley, M. (1995). Learning with piece-wise linear networks. International Journal of Neural Systems, 6(1), 43-59.
    • (1995) International Journal of Neural Systems , vol.6 , Issue.1 , pp. 43-59
    • Staley, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.