메뉴 건너뛰기




Volumn 50, Issue 10, 1999, Pages 1018-1033

A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels

Author keywords

Experimental design; Neural networks; Regression; Simulation metamodels

Indexed keywords


EID: 0033454151     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2600812     Document Type: Article
Times cited : (42)

References (31)
  • 2
    • 0022130884 scopus 로고
    • Validating the simulation metamodel: Some practical approaches
    • Friedman LW and Friedman HH (1985). Validating the simulation metamodel: some practical approaches. Simulation 45: 144-146.
    • (1985) Simulation , vol.45 , pp. 144-146
    • Friedman, L.W.1    Friedman, H.H.2
  • 3
    • 85039061617 scopus 로고
    • Metamodels for simulation input-output relations
    • Swain JJ, Goldsman RC and Wilson JR, IEEE: Piscataway: NJ, USA
    • Barton RR (1992). Metamodels for simulation input-output relations. In: Swain JJ, Goldsman RC and Wilson JR (Eds). Proceedings of the 1992 Winter Simulation Conference, IEEE: Piscataway: NJ, USA, pp 289-299.
    • (1992) Proceedings of the 1992 Winter Simulation Conference , pp. 289-299
    • Barton, R.R.1
  • 4
    • 0024895108 scopus 로고
    • Neural network models in simulation: A comparison with traditional modeling approaches
    • MacNair EA, Musselman KI and HeidelbergerP, IEEE, Piscataway: NJ, USA
    • Fishwick PA (1989). Neural network models in simulation: a comparison with traditional modeling approaches. In: MacNair EA, Musselman KI and Heidelberger P (Eds). Proceedings of the 1989 Winter Simulation Conference, IEEE, Piscataway: NJ, USA, pp 702-710.
    • (1989) Proceedings of the 1989 Winter Simulation Conference , pp. 702-710
    • Fishwick, P.A.1
  • 5
    • 0026851007 scopus 로고
    • Using a neural network to enhance the decision making quality of a visual interactive simulation model
    • Hurrion RD (1992). Using a neural network to enhance the decision making quality of a visual interactive simulation model. J Op Res Soc 43: 333-341.
    • (1992) J Op Res Soc , vol.43 , pp. 333-341
    • Hurrion, R.D.1
  • 6
    • 0027624845 scopus 로고
    • Using 3D animation techniques to help with the experimental design and analysis phase of a visual interactive simulation project
    • Hurrion RD (1993). Using 3D animation techniques to help with the experimental design and analysis phase of a visual interactive simulation project. J Opl Res Soc 44: 693-700.
    • (1993) J Opl Res Soc , vol.44 , pp. 693-700
    • Hurrion, R.D.1
  • 7
    • 0001094427 scopus 로고
    • An investigation on neural network capabilities as simulation metamodels
    • Society for Computer Simulation, San Diego, CA, USA
    • Pierreval H and Huntsinger RC (1992). An investigation on neural network capabilities as simulation metamodels, Proceedings of 1992 Summer Computer Simulation Conference, Society for Computer Simulation, San Diego, CA, USA. pp 413-417.
    • (1992) Proceedings of 1992 Summer Computer Simulation Conference , pp. 413-417
    • Pierreval, H.1    Huntsinger, R.C.2
  • 8
    • 0029342501 scopus 로고
    • A comparison of statistical regression and neural network methods in modelling measurement errors for computer vision inspection systems
    • Chang CA and Su C (1995). A comparison of statistical regression and neural network methods in modelling measurement errors for computer vision inspection systems. Comp Indust Engng 28: 593-603.
    • (1995) Comp Indust Engng , vol.28 , pp. 593-603
    • Chang, C.A.1    Su, C.2
  • 9
    • 0030269798 scopus 로고    scopus 로고
    • Application of artificial neural networks in interactive simulation
    • Payman J, Houshyar A, Severance FL and Sawhney A (1996). Application of artificial neural networks in interactive simulation. Comp Indust Engng 31: 417-420.
    • (1996) Comp Indust Engng , vol.31 , pp. 417-420
    • Payman, J.1    Houshyar, A.2    Severance, F.L.3    Sawhney, A.4
  • 10
    • 0028731802 scopus 로고
    • Neural networks as a metamodelling technique for discrete event stochastic simulation
    • Dagli CH, Fernandez BR, Gosh J and Kumara RT, ASME Press: New York
    • Kilmer RA, Smith AE and Schuman LJ (1994). Neural networks as a metamodelling technique for discrete event stochastic simulation, In: Dagli CH, Fernandez BR, Gosh J and Kumara RT (Eds). Intelligent Engineering Systems through Artificial Neural Networks, Volume 4. ASME Press: New York.
    • (1994) Intelligent Engineering Systems through Artificial Neural Networks , vol.4
    • Kilmer, R.A.1    Smith, A.E.2    Schuman, L.J.3
  • 11
    • 0005854742 scopus 로고    scopus 로고
    • Visual interactive meta-simulation using neural networks
    • Hurrion RD (1998). Visual interactive meta-simulation using neural networks. Int Trans Opl Res 5: 261-270.
    • (1998) Int Trans Opl Res , vol.5 , pp. 261-270
    • Hurrion, R.D.1
  • 12
    • 0018288448 scopus 로고
    • Generalization of simulation results: Practicality of statistical methods
    • Kleijnen JPC, Burg AJ and Ham RTh (1979). Generalization of simulation results: practicality of statistical methods. Eur J Opl Res 3: 50-64.
    • (1979) Eur J Opl Res , vol.3 , pp. 50-64
    • Kleijnen, J.1    Burg, A.J.2    Ham, R.3
  • 13
    • 85024183056 scopus 로고
    • Introduction to simulation
    • Swain JJ, Goldsman D, Crain RC and Wilson JR, IEEE: Piscataway: NJ, USA
    • Shannon RE (1992). Introduction to simulation. In: Swain JJ, Goldsman D, Crain RC and Wilson JR (Eds). Proceedings of the 1992 Winter Simulation Conference, IEEE: Piscataway: NJ, USA, pp 65-73.
    • (1992) Proceedings of the 1992 Winter Simulation Conference , pp. 65-73
    • Shannon, R.E.1
  • 14
    • 84974870149 scopus 로고
    • The metamodel in simulation analysis: Can it be trusted?
    • Friedman LW and Pressman I (1988). The metamodel in simulation analysis: can it be trusted?. J Opl Res Soc 39: 939-948.
    • (1988) J Opl Res Soc , vol.39 , pp. 939-948
    • Friedman, L.W.1    Pressman, I.2
  • 15
    • 0016518731 scopus 로고
    • The construction and implementation of metamodels
    • Blanning RW (1975). The construction and implementation of metamodels. Simulation 24: 177-184.
    • (1975) Simulation , vol.24 , pp. 177-184
    • Blanning, R.W.1
  • 18
    • 0003032547 scopus 로고    scopus 로고
    • Applications of artificial neural networks to combat simulations
    • Kilmer RA (1996). Applications of artificial neural networks to combat simulations. Math Comp Model 23: 91-99.
    • (1996) Math Comp Model , vol.23 , pp. 91-99
    • Kilmer, R.A.1
  • 19
    • 0025675310 scopus 로고
    • Simulation in manufacturing: A regression metamodel approach
    • Madu C (1990). Simulation in manufacturing: a regression metamodel approach. Comp Indust Engng 18: 381-389.
    • (1990) Comp Indust Engng , vol.18 , pp. 381-389
    • Madu, C.1
  • 25
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart DE, McClelland JL and the PDP Research Group, MIT Press: Cambridge, MA
    • Rumelhart DE, Hinton GE and Williams RJ (1986). Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL and the PDP Research Group (Eds). Parallel Distributed Processing, Vol 1. MIT Press: Cambridge, MA, pp 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 26
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • Widrow B, Rumelhart DE and Lehr MA (1994). Neural networks: applications in industry, business and science. Commun of the ACM 37: 93-105.
    • (1994) Commun of the ACM , vol.37 , pp. 93-105
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 27
    • 84984736783 scopus 로고
    • The interface between simulation and neurocomputing
    • Webster W and Uttamsingh J, Proceedings of the SCS Eastern Multiconference, Nashville, Tennessee, April 1990, Society for Computer Simulation, San Diego, CA
    • Weinroth J and Madey G (1990). The interface between simulation and neurocomputing. In: Webster W and Uttamsingh J (Eds). AI and Simulation Theories and Applications. Proceedings of the SCS Eastern Multiconference, Nashville, Tennessee, April 1990, Society for Computer Simulation, San Diego, CA, pp1-5.
    • (1990) AI and Simulation Theories and Applications , pp. 1-5
    • Weinroth, J.1    Madey, G.2
  • 28
    • 0027677548 scopus 로고
    • Representing and learning distributions with the aid of a neural network
    • Hurrion RD (1993). Representing and learning distributions with the aid of a neural network. J Opl Res Soc 44: 1013-1023.
    • (1993) J Opl Res Soc , vol.44 , pp. 1013-1023
    • Hurrion, R.D.1
  • 29
    • 0030194006 scopus 로고    scopus 로고
    • Determining the number of kanbans: A simulation metamodelling approach
    • Aytug H, Dogan CA and Bezmez G (1996). Determining the number of kanbans: a simulation metamodelling approach. Simulation 67: 23-32.
    • (1996) Simulation , vol.67 , pp. 23-32
    • Aytug, H.1    Dogan, C.A.2    Bezmez, G.3
  • 30
    • 0031284208 scopus 로고    scopus 로고
    • An example of simulation optimisation using a neural network metamodel: Finding the optimum number of kanbans in a manufacturing system
    • Hurrion RD (1997). An example of simulation optimisation using a neural network metamodel: finding the optimum number of kanbans in a manufacturing system. J Opl Res Soc 48: 1105-1112.
    • (1997) J Opl Res Soc , vol.48 , pp. 1105-1112
    • Hurrion, R.D.1
  • 31
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking RR (1976). The analysis and selection of variables in linear regression. Biometrics 32: 1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.