-
1
-
-
68349089768
-
The derivatives of composite functions
-
A. Dresden, The derivatives of composite functions. Amer. Math. Monthly 50, (1943). 9-12.
-
(1943)
Amer. Math. Monthly
, vol.50
, pp. 9-12
-
-
Dresden, A.1
-
2
-
-
0035995563
-
The curious history of Faa di Bruno's Formula
-
W.P. Johnson, The curious history of Faa di Bruno's Formula, Amer. Math. Monthly, 109 (2002), 217-227.
-
(2002)
Amer. Math. Monthly
, vol.109
, pp. 217-227
-
-
Johnson, W.P.1
-
3
-
-
33846242594
-
A short proof of the formula of faa di bruno
-
K. Spindler, A short proof of the formula of Faa di Bruno. Elem. Math. 60 (2005), no. 1, 33-35.
-
(2005)
Elem. Math
, vol.60
, Issue.1
, pp. 33-35
-
-
Spindler, K.1
-
4
-
-
14544275417
-
Prehistory of faa di bruno's formula
-
A. Craik, Prehistory of Faa di Bruno's Formula, Amer. Math. Monthly, 112 (2) 2005, 119-130.
-
(2005)
Amer. Math. Monthly
, vol.112
, Issue.2
, pp. 119-130
-
-
Craik, A.1
-
5
-
-
0141802164
-
Generalization of the formula of Faa Di Bruno for a composite function with a vector argument
-
R.L. Mishkov, Generalization of the formula of Faa Di Bruno for a composite function with a vector argument, Internat. J. Math. and Math. Sci. 24 (2000), 481-491.
-
(2000)
Internat. J. Math. and Math. Sci.
, vol.24
, pp. 481-491
-
-
Mishkov, R.L.1
-
6
-
-
68349111314
-
The general formula for higher-order derivatives of composite functions
-
(Chinese)
-
B. S. Song, The general formula for higher-order derivatives of composite functions. (Chinese) Pure Appl. Math. (Xi'an) 5 (1989), 83-85.
-
(1989)
Pure Appl. Math. (Xi'an)
, vol.5
, pp. 83-85
-
-
Song, B.S.1
-
7
-
-
36348969994
-
The multivariate faa di bruno formula and mul-tivariate taylor expansions with explicit integral remainder term
-
R.B. Leipnik and C.E.M. Pearce, The multivariate Faa di Bruno formula and mul- tivariate Taylor expansions with explicit integral remainder term. ANZIAM J. 48 (2007), no. 3, 327-341.
-
(2007)
ANZIAM J.
, vol.48
, Issue.3
, pp. 327-341
-
-
Leipnik, R.B.1
Pearce, C.E.M.2
-
8
-
-
84971108529
-
Formulae for high derivatives of composite functions
-
L.E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cam. Phil. Soc. 83 (1978), 159-165.
-
(1978)
Math. Proc. Cam. Phil. Soc.
, vol.83
, pp. 159-165
-
-
Fraenkel, L.E.1
-
9
-
-
68349084011
-
Calculation of high order derivatives of composite functions by a graph-theoretic method
-
(Chinese)
-
Z.Y. Shen, Calculation of high order derivatives of composite functions by a graph- theoretic method. (Chinese) Neimenggu Daxue Xuebao 16 (1985), no. 2, 175-182.
-
(1985)
Neimenggu Daxue Xuebao
, vol.16
, Issue.2
, pp. 175-182
-
-
Shen, Z.Y.1
-
10
-
-
38249039791
-
Multidimensional extension of Faa di Bruno's formula
-
H. Gzyl, Multidimensional extension of Faa di Bruno's formula. J. Math. Anal. Appl. 116 (1986), no. 2, 450-455.
-
(1986)
J. Math. Anal. Appl.
, vol.116
, Issue.2
, pp. 450-455
-
-
Gzyl, H.1
-
11
-
-
21344454432
-
A multivariate Faa di Bruno formula with appli-cations
-
G.M. Constantine and T.H. Savits, A multivariate Faa di Bruno formula with appli- cations. Trans. Amer. Math. Soc. 348 (1996), no. 2, 503-520.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, Issue.2
, pp. 503-520
-
-
Constantine, G.M.1
Savits, T.H.2
-
12
-
-
0141461711
-
A short proof of the generalized faa di bruno's formula
-
L. Hernadez Encinas and J. Munoz Masque, A short proof of the generalized Faa di Bruno's formula. Appl. Math. Lett. 16 (2003), no. 6, 975-979.
-
(2003)
Appl. Math. Lett
, vol.16
, Issue.6
, pp. 975-979
-
-
Encinas, L.H.1
Masque, J.M.2
-
13
-
-
30344479471
-
Combinatorics of partial derivatives
-
M. Hardy, Combinatorics of partial derivatives, Electron. J. Combin. 13 (2006), #R1.
-
(2006)
Electron. J. Combin
, vol.13
-
-
Hardy, M.1
|