메뉴 건너뛰기




Volumn 16, Issue 6, 2003, Pages 975-979

A short proof of the generalized Faà di Bruno's formula

Author keywords

Composite functions; Differential calculus; Partial derivatives

Indexed keywords

CONFORMAL MAPPING; FUNCTION EVALUATION; PARTIAL DIFFERENTIAL EQUATIONS; POLYNOMIALS; SET THEORY; THEOREM PROVING;

EID: 0141461711     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-9659(03)90026-7     Document Type: Article
Times cited : (48)

References (15)
  • 1
    • 0001666357 scopus 로고
    • Note sur une nouvelle formule de calcul différentiel
    • F. de Bruno, Note sur une nouvelle formule de calcul différentiel, Quart. J. Math. 1, 359-360, (1856).
    • (1856) Quart. J. Math. , vol.1 , pp. 359-360
    • De Bruno, F.1
  • 2
    • 0141578992 scopus 로고    scopus 로고
    • Krichever maps, Faà di Bruno polynomials, and cohomology in KP theories
    • G. Falqui, C. Reina and A. Zampa, Krichever maps, Faà di Bruno polynomials, and cohomology in KP theories, Lett. Math. Phys. 42 (4), 349-361, (1997).
    • (1997) Lett. Math. Phys. , vol.42 , Issue.4 , pp. 349-361
    • Falqui, G.1    Reina, C.2    Zampa, A.3
  • 3
    • 0009175358 scopus 로고
    • The multivariate saddlepoint method and chi-squared for the multinomial distribution
    • I.J. Good, The multivariate saddlepoint method and chi-squared for the multinomial distribution, Annals of Mathematical Statistics 32, 535-548, (1961).
    • (1961) Annals of Mathematical Statistics , vol.32 , pp. 535-548
    • Good, I.J.1
  • 4
    • 0030284693 scopus 로고    scopus 로고
    • Iterated derivatives of the output of a nonlinear dynamic system and Faá di Bruno formula
    • C. Hespel, Iterated derivatives of the output of a nonlinear dynamic system and Faá di Bruno formula, Math. Comput. Simulation 42, 641-657, (1996).
    • (1996) Math. Comput. Simulation , vol.42 , pp. 641-657
    • Hespel, C.1
  • 6
    • 0005645476 scopus 로고
    • Applications of Faà di Bruno's formula in mathematical statistics
    • E. Lukacs, Applications of Faà di Bruno's formula in mathematical statistics, Amer. Math. Monthly 62, 340-348, (1955).
    • (1955) Amer. Math. Monthly , vol.62 , pp. 340-348
    • Lukacs, E.1
  • 7
    • 0141467359 scopus 로고    scopus 로고
    • Some strange identities related to Faà di Bruno formula
    • X. Zhao and T. Wang, Some strange identities related to Faà di Bruno formula, J. Math. Res. Exposition 21 (2) 215-218, (2001).
    • (2001) J. Math. Res. Exposition , vol.21 , Issue.2 , pp. 215-218
    • Zhao, X.1    Wang, T.2
  • 8
    • 0035534417 scopus 로고    scopus 로고
    • From ford to faà
    • H. Flanders, From Ford to Faà, Amer. Math. Monthly 108 (6), 559-561, (2001).
    • (2001) Amer. Math. Monthly , vol.108 , Issue.6 , pp. 559-561
    • Flanders, H.1
  • 9
    • 21344454432 scopus 로고    scopus 로고
    • A multivariate Faa di Bruno formula with applications
    • G.M. Constantine and T.H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (2), 503-520, (1996).
    • (1996) Trans. Amer. Math. Soc. , vol.348 , Issue.2 , pp. 503-520
    • Constantine, G.M.1    Savits, T.H.2
  • 10
    • 84971108529 scopus 로고
    • Formulae for high derivatives of composite functions
    • L.E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc. 83, 159-165, (1978).
    • (1978) Math. Proc. Cambridge Philos. Soc. , vol.83 , pp. 159-165
    • Fraenkel, L.E.1
  • 11
    • 0005579596 scopus 로고    scopus 로고
    • A q-analogue of Faà di Bruno's formula
    • W. P. Johnson, A q-analogue of Faà di Bruno's formula, J. Combin. Theory, Ser. A 76, 305-314, (1996).
    • (1996) J. Combin. Theory, Ser. A , vol.76 , pp. 305-314
    • Johnson, W.P.1
  • 12
    • 0141578991 scopus 로고
    • On the n-derivative of composite functions
    • M. McKiernen, On the n-derivative of composite functions, Amer. Math. Monthly 63, 331-333, (1956).
    • (1956) Amer. Math. Monthly , vol.63 , pp. 331-333
    • McKiernen, M.1
  • 13
    • 0141802164 scopus 로고    scopus 로고
    • Generalization of the formula of Faà di Bruno for a composite function with a vector argument
    • R.L. Mishkov, Generalization of the formula of Faà di Bruno for a composite function with a vector argument, Internat. J. Math. & Math. Sci. 24 (7), 481-491, (2000).
    • (2000) Internat. J. Math. & Math. Sci. , vol.24 , Issue.7 , pp. 481-491
    • Mishkov, R.L.1
  • 14
    • 84966222362 scopus 로고
    • Derivatives of composite functions
    • J. Riordan, Derivatives of composite functions, Bull. Amer. Math. Soc. 52, 664-667, (1946).
    • (1946) Bull. Amer. Math. Soc. , vol.52 , pp. 664-667
    • Riordan, J.1
  • 15
    • 0141690556 scopus 로고
    • A new look at Faa' de Bruno's formula for higher derivatives of composite functions and the expression of some intrinsic derivatives
    • F. Ronga, A new look at Faa' de Bruno's formula for higher derivatives of composite functions and the expression of some intrinsic derivatives, Proc. Symp. Pure Math. 40 (Part 2), 423-431, (1983).
    • (1983) Proc. Symp. Pure Math. , vol.40 , Issue.PART 2 , pp. 423-431
    • Ronga, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.